Schulphysik 1 für das Lehramt in der Mittel- und Realschule

Slides:



Advertisements
Ähnliche Präsentationen
Schulphysik 1 für das Lehramt in der Grund-, Haupt-, und Realschule
Advertisements

1.3 Beschleunigung, Kraft und Masse (Dynamik)
Mechanik, Wärmelehre, Elektrizitätslehre, physikalische Größen
Geipel / Reusch (2005): Physik 8I
Kräfte.
Schriftliche Hausarbeit von Lauren Kappler
Die Newtonschen Gesetze
Physik am Samstagmorgen 2007 – Physik und...
Die drei Axiome von Newton ( * † 1727 )
Mechanik Folien zur Unterrichtsreihe “Mechanik” in Klasse 9
Einführung in die Physik für LAK
MECHANIK gehört zur PHYSIK.
Hans-Rudolf Niederberger Vordergut Nidfurn Ausgabe 15. September 2008 Länge Masse Temperatur Stoffmenge BERUFSFACHSCHULE GEWERBLICH-INDUSTRIELLES.
Temperatur, Druck im mikroskopischen Bild
Eine Eigenschaft fester Körper
Geozentrisches Weltbild
Gewicht und Masse und Kraft
Hydro- und Aerostatik Der Druck.
Druck in Flüssigkeiten (und Festkörpern)
Massenmittelpunkt, „Schwerpunkt“, Drehachsen und Trägheitsmoment
Masse und Kraft Masse: elementare Eigenschaft eines jeden Körpers
Die elektrische Feldstärke
Die elektrische Feldstärke
Physikalische Grundgrößen Aggregatzustände
Die physikalischen Grundgrößen
Zentripetal- und Zentrifugalkraft
2. Das Gravitationsgesetz, die schwere Masse
Die physikalischen Grundgrößen
Zentripetal- und Zentrifugalkraft
Hydro- und Aerostatik Der Druck.
von Marco Bühler und Elia Bodino
Kräfte bei der Kreisbewegung
Die Schwerkraft(Gravitation)
I. Die Mechanik Newtons.
Lehrplan Kenntnis der grundlegenden physikalischen Gesetze
Physik-Quiz 6. Klasse.
Ausgewählte Kapitel der Physik
Zwangskraft Prinzip der Statik Gewichtskraft.
Die Trägheitskraft auf Kreisbahnen
Die physikalischen Grundgrößen
Masse und Kraft Masse: elementare Eigenschaft eines jeden Körpers
Theorieblatt: Masseinheiten, das SI-System
Elektrisches Feld und elektrische Feldstärke
Gravitation regiert die Welt
§2.1 Kinematik des Massenpunktes
Gravitationstheorie: nach Newton und nach Einstein
2.1 Grundprinzipien der Bewegung: Die Newton‘schen Axiome
Kapitel 4: Statik in kontinuierlichen Medien
Die Newtonschen Axiome
Isaac Newton Weiter.
Die Physikalischen Gesetze des Isaac Newton
Die Physikalischen Gesetze des Isaac Newton
Körper und Stoffe Masse und Volumen von Körpern Hallo!
Vergleich von Masse und Gewicht
Kraft, Feld, Potenzial und potenzielle Energie am Beispiel Gravitation
Astronomie Nicht das „Wie bewegen sich unsere Planeten“ sondern das „WARUM?“ untersuchen wir heute. Das Newton‘sche Gravitationsgesetz.
Was versteht man unter Bewegung?
Ideale Gase Ideale Gase sind ein „Modellsystem“: - kugelförmige Teilchen, frei beweglich - Wechselwirkung nur durch vollkommen elastische Stöße (Energieübertrag.
Neutrino-Oszillation !
Wie messen wir eine Kraft Fx ?
Mechanik der Flüssigkeiten und Gase
Satellitengeodäsie Newtonsche Axiome Torsten Mayer-Gürr
Grundlagen der Mechanik
Newtons Gravitationsgesetz
PAUL-EHRLICH-SCHULE Lernfeld 3 Chemikanten
EinSparProjekt an Schulen der Stadt Aalen „Physikalische Grundlagen„
Energieerhaltung Abgeschlossenes System
Der elektrische Strom Elektr. Energie findet man überall
Trägheitssatz (1. Newtonsches Axiom)
Tutorium der Grund- und Angleichungsvorlesung Physik. Impuls.
 Präsentation transkript:

Schulphysik 1 für das Lehramt in der Mittel- und Realschule

Grundschule: Heimat- und Sachunterricht (Stufe 1 …4) Mittelschule: Physik/Chemie/Biologie (Stufe 5 … 9) Realschule: Physik (Stufe 5,6,7 … 10) Fachlehrplan Physik I für die sechsstufige Realschule („LehrplanPlus“): 7.1 Mechanik (Teil 1, Statik, Kinematik) 7.2 Optik 7.3 Magnetismus und Elektrizitätslehre 8.1 Mechanik und Energie 8.2 Wärmelehre 8.3 Elektrizitätslehre 8.4 Astronomie oder Akustik 9.1 Mechanik von Flüssigkeiten und Gasen 9.2 Wärmelehre 9.3 Elektrizitätslehre 10.1 Mechanik (Teil 3, Dynamik, Kinematik) 10.2 Elektrizitätslehre 10.3 Einführung in die Atom- und Kernphysik 10.4 Grundlagen der Energieversorgung http://www.isb.bayern.de Staatsinstitut für Schulqualität und Bildungsforschung (ISB) 2

Mechanik in der Mittelschule und Realschule Übersicht Masse Kräfte (Statik) Kraftwirkungen (Dynamik) Bewegung (Kinematik) Energie 3

Definition von „Masse“ Die Masse ist ein Maß für die Stoffmenge. Sie ist klassisch konstant, d.h. unabhängig von Ort und Zeit, relativistisch aber bewegungsabhängig. 1 kg: 1 Liter Wasser bei 4°C (Urkilogramm in Paris 1 kg + 28 mg) Das Kilogramm ist die Einheit der Masse im „System international d‘ Unites (SI)“. Masse 4

mPTB = 1 kgParis + 245 µgParis ± 4 µgParis Das Kilogramm 1795 als willkürliches Vereinbarungsmaß: Festlegung als Masse von 1 Liter Wasser bei 4°C Seit 1889: In zylindrischer Form eine Legierung von 90% Platin und 10% Iridium Problem: Massenveränderung durch Korrosion bzw. Diffusion Foto „Urkilogramm“: lizenzfrei aus Internet PTB-Braunschweig im Jahr 1996: mPTB = 1 kgParis + 245 µgParis ± 4 µgParis Masse 5 5

Massenbestimmung „Messen heißt Vergleichen“ mit Urkilogramm „Avogadro-Projekt“: Kugel aus reinem 28Si könnte zur Neudefinition des Urkilogramms herangezogen werden. (Quelle: PTB) Masse 6

Massenbestimmung „Messen heißt Vergleichen“ mit Urkilogramm Problem: magn. Kräfte auf Metallkörper Verteilung der z-Komponente der magnetischen Induktion B einer Waage in Höhe der Waagschale (z = 0) auf einer Fläche von 10 cm x 10 cm. (Erdmagnetfeld 50 µT) PTB-Braunschweig Masse 7

Verschiedene Formulierungen Molare Masse: Masse von 1 Mol (Teilchenzahl) eines Stoffes 1Mol = Anzahl der Atome in 12g des Isotops 12C = 6.0220943 x 1023 Stück (NA: Avogadro Zahl) Atommasse: 1 12C-Atom wiegt 12g/NA = 2 x 10-26 kg Die mittlere Masse der 12 Nukleonen definiert die atomare Masseneinheit u. 1u = 2 x 10-26 kg /12 = 1,660540 · 10-27 kg Atommassen sind wegen der Isotopenverteilung praktisch nie ganzzahlig. Masse-Leuchtkraft-Beziehung: Zusammenhang zwischen der Verbreiterung der Spektrallinien eines Sterns und seiner Masse (Dichte). Höchstdruck Niederdruck Quecksilberdampf Hg – Dampf Lampe Masse

Masseneigenschaften Massen sind träge Wechselwirkung zwischen be-schleunigender Kraft (actio) und sich der Beschleunigung wider-setzenden Masse (reactio) Beschleunigende Kraft und Masse sind zueinander proportional: F/m = const = a Einheitenfestlegung für die Kraft: 1 Newton ist die Kraft, die eine Masse von 1 kg pro Sekunde um 1 m/s beschleunigt: [F] = 1 N = 1kg · m / s² Abbildung „Auto“: vgl. Geipel, R./ Reusch W. (Hrsg.) (2002): Physik 7I. Physik für die sechsstufige Realschule. Bamberg: C.C.Buchner; S. 96 Foto „Stapp“: lizenzfrei aus Internet Jahr 1954 ca. 40 g Masse

Masseneigenschaften Massen sind schwer Anziehende Wechselwirkung zwischen Massen: Gravitation dargestellt als Kraft: FG Massen werden aufeinander hin beschleunigt: z.B. Erdbeschleunigung [g] Gravitationskraft weitreichend, aber schwach: Abbildung „Planeten“: vgl. Hörter, C. (2001): Physik 7 I. Realschule Bayern. Berlin: Cornelsen S. 74 Abbildung „freier Fall“: vgl. Deger H./ Gleixner C./ Pippig R./ Worg R. (2005): Ikarus. Natur und Technik. Schwerpunkt: Physik 7. München: Oldenbourg Schulverlag GmbH; S. 118 Masse

Massenanziehung Massen ziehen sich NUR an! Die für eine Kreisbahn eines Planeten um die Sonne nötige Zentripetalkraft ist die Gravitation Die Stärke der Gravitationskraft hängt von den Massen der beteiligten Partner und deren Abstand ab Die Proportionalitätskonstante Γ = 6,67·10-11 (N·m²)/kg² wurde 1798 erstmals durch Henry Cavendish mit Hilfe der Gravitationsdrehwaage ermittelt Abbildung „Gravitationsdrehwaage“: aus http://lp.uni-goettingen.de/get/text/668 Masse

Masse und Gewichtskraft Wechselwirkung zwischen der Masse der Erde und der Masse eines Gegenstandes Wechselwirkung proportional zur Masse Wegen der Massenunterschiede: Gegenstand bewegt sich zur Erde (mErde = 5,98 ·1024 kg) hin Der auf der Erde stehende Beobachter sieht den Gegenstand „fallen“ Charakteristische Größe: Fallbeschleunigung g g ist abhängig von: - Entfernung zum Erdmittelpunkt (im Bergwerk größer, Airy 1854) - geographischen Breite (9,82 m/s2 in Trondheim; 9,80 m/s2 in Rom) - Ebbe und Flut mittlerer Wert: g = 9,81 m/s²  g ≈ 10 m/s² Fallbeschleunigung auf Feder und Münze gleich, wenn die Luftreibung vernachlässigt werden kann (Äquivalenzprinzip von G. Galilei) Masse

Masse und Gewichtskraft Äquivalenzprinzip von G. Galilei ist noch eine offene Frage: Zentrum für Angewandte Raumfahrttechnologie und Mikrogravitation (Fallturm der Uni Bremen) 110 m Fallhöhe 4.5 s Fallzeit Masse 13 13

Fallturm bei Bremen Masse 14 14

Masse als Stoffmenge Jeder Stoff benötigt seinen Platz: Masse braucht Volumen Volumenmessung: Längenmessung längs der drei Raumrichtungen, V = l³; entsprechend bei anderen Geometrien (Kugel, Zylinder...). Weitere bekannte Hohlmaße: Maß (1 l), Hirschen (200 l), Barrel (imp. 163,65 l, US 158,98 l für Öl) Das Volumen unregelmäßig geformter Körper, deren Hohlmaßformeln i.d.R. unbekannt sind, kann man mithilfe der Verdrängungsmethode bestimmen: physikalische Volumenbestimmung durch Verdrängung einer Flüssigkeit Verwendung eines Messzylinders mit Skala, an der man das Volumen der Flüssigkeit ohne und mit dem Körper ablesen kann Bei größeren Körpern verwendet man auch ein Überlaufgefäß Abbildungen „Volumenbestimmung“: Geipel, R./ Reusch W. (Hrsg.) (2005): Physik 8I. Physik für die sechsstufige Realschule. Bamberg: C.C.Buchner; S. 9 Masse

Dichte Für jede Stoffart ist der Quotient aus Masse und Volumen konstant, d.h. Masse und Volumen sind direkt proportional zueinander. Dichte als Kennzeichen eines Stoffes! Die Dichte bezieht sich auf den Füllzustand des Volumens, d.h. auf den materiellen Aufbau eines Körpers. Formaler Zusammenhang: Einheit: Wahl der geeigneten Einheiten: Abbildung „Graph“: Geipel, R./ Reusch W. (Hrsg.) (2005): Physik 8I. Physik für die sechsstufige Realschule. Bamberg: C.C.Buchner; S. 10 Masse 16 16

Dichte Pyknometer (VFK = VWasser): m0 die Masse des leeren Pyknometers, m1 die Masse des mit Wasser gefüllten Pyknometers, m2 die Masse des Pyknometers mit dem Festkörper, m3 die Masse des Pyknometers mit dem Festkörper, aufgefüllt mit Wasser Abbildung „Graph“: Geipel, R./ Reusch W. (Hrsg.) (2005): Physik 8I. Physik für die sechsstufige Realschule. Bamberg: C.C.Buchner; S. 10 Masse 17 17

Die Newtonschen Gesetze Isaac Newton (1643 – 1727) Anno 1687 Masse 18

Die Newtonschen Gesetze Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus illud a viribus impressis cogitur statum suum mutare. Gesetz: Jeder Körper beharrt in seinem Zustand der Ruhe oder der gleichförmigen, gradlinigen Bewegung, wenn er nicht durch einwirkende Kräfte soweit gezwungen wird, seinen Zustand zu ändern. („Zustand der Ruhe oder der Bewegung“ = Impuls P) quatenus; Adv. soweit cogere; zwingen virtus, Kraft Masse

Die Newtonschen Gesetze Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam qua vis illa imprimitur. 2. Gesetz: Die Änderung der Bewegung ist proportional zu der Kraft, die auf die Bewegung wirkt, und geschieht zum Zweiten entlang der Richtung jener Kraft, die einwirkt. vis, f. Kraft Masse 20

Die Newtonschen Gesetze Actioni contrariam semper et aequalem esse reactionem, sive corporum duorum actiones in se mutuo semper esse aequales et in partes dirigi. 3. Gesetz: Die Wirkung ist stets der Gegenwirkung entgegengesetzt und gleich, oder die Wirkungen zweier Körper aufeinander sind stets gleich und von entgegengesetzter Richtung. sive; oder, anders gesagt partes, … 21 Masse

Relativistische Masse Einsteins Grundhypothese: Die Lichtgeschwindigkeit c ist die größtmögliche Ausbreitungsgeschwindigkeit im Vakuum. also: v < c Nach Newton kann der Geschwindigkeitszuwachs Dv = a Dt = F Dt/m0 beliebig groß werden, wenn die Kraft F nur lange genug einwirkt. Nahe der Lichtgeschwindigkeit c ist Dv sehr klein, egal wie groß die Kraft ist. d.h. kleiner Zuwachs Dv trotz großer Kraft F: Körper hat sehr große (bewegte) Masse m Masse 22