Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Computerorientierte Physik VORLESUNG Zeit: jeweils Mo. 9.40 - 11.10 Uhr Ort: Hörsaal 5.01, Institut für Experimentalphysik, Universitätsplatz 5, A-8010.

Ähnliche Präsentationen


Präsentation zum Thema: "Computerorientierte Physik VORLESUNG Zeit: jeweils Mo. 9.40 - 11.10 Uhr Ort: Hörsaal 5.01, Institut für Experimentalphysik, Universitätsplatz 5, A-8010."—  Präsentation transkript:

1 Computerorientierte Physik VORLESUNG Zeit: jeweils Mo Uhr Ort: Hörsaal 5.01, Institut für Experimentalphysik, Universitätsplatz 5, A-8010 Graz

2

3 Einleitung: Grundlagen Hardwaregruppen und ihre Kommunikation CPU Control Bus Daten Bus Adress Bus Clock Memory Peripherie InterruptDMAPIASIA

4 Memory RAM: Random Access Memory statisch: Flip-Flop dynamisch: (Ladung eines Kondensators) refresh Datenbreite: 1-Bit 1-Byte (8 Bit), unteres/oberes Halbbyte(4 Bit) 1-Word (16 Bit) double Word (32 Bit) quad Word (64 Bit) Adressierung:Speicherchips unterschiedlicher Organisation (1Bit x 64k, 8Bit x 8k) Ansprechen über Adressbus, Chip-Select (CS) und Read-Write (RW) Signale

5 Memory Organisation 8 x 32k 8 x 8k 8-Bit bidirektionaler Datenbus (Tri-State-Buffer) 8 x 8k Adressbus A0-A12 Enable, R/W Controlbus Enable, R/W Codierung CS A13-A14

6 Peripherie Memory mapped: Vorteil: Adressierung wie Memory grosser Adressierraum alle Adressierungsarten der CPU Nachteil: schlechte Strukturierung, höhere Anforderungen an Systemdesign (Memory Management) Eigene I/O Adressierung: (Input/Output) Vorteil: Übersichtliches Systemdesign Spezifische Hardwarebehandlung Nachteil: Mehr Aufwand für CPU Eigene Befehle, mehr Signalleitungen

7 Interrupt System Aufgabe: Beeinflussung des Programmablaufes durch äußere Ereignisse. NMI: non maskable Interrupt: nicht vom Programm ignorierbarer Interrupt z.B. Reset MI: maskable Interrupt vom Programm kann entschieden werden, ob Interrupt ermöglicht werden soll. z.B. Tastaturbetätigung Interrupt Controller: intelligenter Baustein Maskierung einzelner Interrupts, Prioritäten, Kaskadierbar

8 DMA: Direct Memory Access Aufgabe: Externer schreib-lese-Zugriff aufs Memory Ablauf: Nach Anforderung Stillstand der CPU Freigabe von Adress-, Daten- und Controlbus Übenahme der externen Kontrolle Anwendung: schnellere externe Hardware (früher) (Multiprozessor Anwendungen) Controller: Intelligenter Baustein Maskierbar, Kaskadierbar, ähnlich Interruptcontroller

9 PIA: Parallel Interface Adapter Aufgabe: Übergang vom internen Bussystem auf externe mehr-Bit (8 Bit, 16 Bit) Datenverbindung z.B. parallele Druckerverbindung Controller: Intelligenter Baustein individuelle uni-direktionale und bidirektionale Programmierung einzelner Leitungen Handshakelogik

10 SIA: Seriel Interface Adapter Aufgabe: Verbindung des internen Buses zu externer 1-Bit serieller Leitung z.B. RS232 (COM1:, COM2:, etc.) USB, Controller: Intelligenter Baustein Baudrate, Stop-Bits, Synchronisation, Parity Handshake Leitungen (Hardware, Software)

11 Central Processor Unit (CPU) Registers Arithmetic/Logic Unit Execution- Control Interface

12 Prozessorbefehle Rechenbefehle: AND, OR, ADD, TEST, CMP, NOP Datenverschieben: MOV, POP, PUSH, IN, OUT, Kontrollbefehle: JMP, CALL, INT, RET, IRET, LOOP als unbedingte und bedingte Verzweigungen PrefixCode1Code2Daten RISC: Reduced instruction set (besonders schnelle optimierte CPU´s)

13 Adressierungsarten Register-Adressierung Memory-Adressierung: direkte, indirekte, indizierte Indiziert: Basis IndexSkalierung Displacement x +

14 Register Rechenregister: AX, BX, CX, (AH, AL, EAX, etc.) Indexregister: BP, SI, DI, SP Flagregister: oder Statusregister Instruction Pointer Segment Register: für Memory Management Control Register: z.B. für Paging

15 Memory Management Aufgabe: Verwaltung des Speichers, virtueller Speicher Einteilung: Segmente (Selektor, Offset, Descriptor) abh. ob Real-Mode oder Protected Mode Code-Segmente Daten-Segmente Stack-Segmente Paging (DIR, TABLE,OFFSET) DIR: Page Directory TABLE: Page table OFFSET: Adresse in der Page (4kB) Speichermodelle: flacher-, segmentierter-, virueller Adressraum

16 Computerorientierte Physik Übungen Zeit: jeweils Mo Uhr bzw. freie Zeitvereinbarung (Projekte) Ort: Hörsaal 5.01, Institut für Experimentalphysik, Universitätsplatz 5, A-8010 Graz

17 Beispiele Fourier-Spektroskopie (FTIR) (H.Krenn) Analyse von Bewegungsvorgängen mit GPS Höhenvergleich mit Barometer (Hochschwab) Eintrittsverhalten von Meteoriten in Atmosphäre Berechnung und Simulation optischer Geräte (A.Leitner) Bewegungsanalyse der Handschrift Analyse von Bewegungsvorgängen mit GPS Montainbike-Strecken Analyse von Bewegungsvorgängen mit GPS Flugzeug


Herunterladen ppt "Computerorientierte Physik VORLESUNG Zeit: jeweils Mo. 9.40 - 11.10 Uhr Ort: Hörsaal 5.01, Institut für Experimentalphysik, Universitätsplatz 5, A-8010."

Ähnliche Präsentationen


Google-Anzeigen