Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Wilhelm Moser SQL - Structured Query Language Herzlich ! Herzlich willkommen ! 1.

Ähnliche Präsentationen


Präsentation zum Thema: "Wilhelm Moser SQL - Structured Query Language Herzlich ! Herzlich willkommen ! 1."—  Präsentation transkript:

1 Wilhelm Moser SQL - Structured Query Language Herzlich ! Herzlich willkommen ! 1

2 Wilhelm Moser SQL - Structured Query Language Was werden Sie nach dem Kurs können ? Datenbanken abfragen können Komplizierte Auswahlabfragen erstellen können Datenbankschnittstellen verstehen können Datenbanken verwalten können RDBMS - Systeme verstehen können Die Arbeitsweise von Datenbankservern in den Grundzügen verstehen können 2

3 Wilhelm Moser SQL - Structured Query Language Kursinhalte Allgemeines über Datenbanksysteme Relationale Datenbanksysteme Die Übungsdatenbank SQL - Structured Query Language die Standard Abfragesprache DML - Data Manipulation Language SELECTDaten abfragen INSERTDaten einfügen UPDATEDaten verändern DELETEDaten löschen DDL - Data Definition Language 3 DCL - Data Control Language

4 Wilhelm Moser SQL - Structured Query Language SQL - Structured Query Language - Einleitung I SQL wurde vom ANSI (American National Standard Institute) genormt und als Standarddatenbanksprache empfohlen. Leider sind dennoch verschiedene Dialekte bei den Datenbanken vorhanden. Vorteile des Standards Praktisch alle Datenbanken können mit SQL abgefragt werden Eine einheitliche Sprache ermöglich programmübergreifenden Datenaustausch Applikationen sind nicht an eine spezielle Datenbank gebunden Die Verbindung zur Datenbank ermöglichen spezielle Programme oder das Betriebssystem (ODBC, DAO, ADO, RDO MS-Jet Engine.....) 4

5 Wilhelm Moser SQL - Structured Query Language SQL - Structured Query Language - Einleitung II SQL ist im Gegensatz zu anderen Datenbanksprachen nicht Recordset sondern mengenorientiert. Daher bezieht sich eine Abfrage NIE auf einzelne Datensätze sondern auf eine Menge von Datensätzen. In einem Programm (z.B. MS-QUERY) oder einer Programmiersprache wird ein SQL-Befehl formuliert. Die Richtigkeit der Syntax wird überprüft und als Befehlsfolge an das RDBMS übergeben, das die Abfrage optimiert und ausführt. Die Ergebnisse werden an den Aufrufer übergeben. Die Aufgaben von SQL Daten manipulierenDMLData Manipulation Language Datenstrukturen definierenDDLData Definition Language 5 Datenfluß kontrollierenDCLData Control Language

6 Wilhelm Moser SQL - Structured Query Language DML - Data Manipulation Language - Übersicht Ein Teil der SQL wird als DML bezeichnet. Die Funktionen zur Daten- manipulation sind: Erfassen Ändern Löschen Abfragen SQL Sprachelemente sind nicht Case-Sensitive. Das gilt allerdings nicht für Strings. 6 Bei Abfragen aus Programmiersprachen kann die Art der Darstellung des Recordsets gesetzt werden: OpenTable, OpenDynaset, OpenSnapshot (OpenTableDef)

7 Wilhelm Moser SQL - Structured Query Language SQL-DML - Statements - SELECT & WHERE Die Hauptaufgabe einer Datenbank ist die Bereitstellung von erfaßten Daten nach bestimmten Kriterien. Die einfachste Form ist die Abfrage aller vorhandenen Datensätze und Felder einer Tabelle: SELECT * FROM KUNDEN Natürlich können wir auch spezielle Felder anstelle des Asteriks angeben: SELECT NAME, GEBURTSDATUM FROM KUNDEN 7 Durch Definition von Bedingungen ist die gezielte Auswahl möglich: SELECT NAME, GEBURTSDATUM FROM KUNDEN WHERE GEBURTSDATUM > " "

8 Wilhelm Moser SQL - Structured Query Language SQL-DML - Operanden & Operatoren Listing Die Operanden Konstante1,HERMANN..... Columnskunden.name.... Funktionenmin(kunden.nr), 4+5, now.... (Achtung Datenbankspezifisch) Konstantenliste(´JA´,´NEIN´,´UNBEKANNT´).... Operatoren (Vergleich und logische) =Gleich <>Ungleich =Größer oder Gleich inOperand innerhalb einer Liste not inOperand nicht innerhalb einer Liste between andOperand zwischen 2 Werten not between andOperand außerhalb der 2 Werte likeOperand so ähnlich wie: Vergleich mit Wildcards not likeOperand nicht ähnlich wie is nullOperand ist unbestimmt (NULL) is not nullOperand ist bestimmt andlogisches und orlogisches oder 8

9 Wilhelm Moser SQL - Structured Query Language SQL-DML - Operanden & Operatoren Logisches and SELECT NAME, ADRESSE FROM KUNDEN WHERE L_CODE = 'AUT' and Geburtsdatum >= ' ' 9 Logisches 0r SELECT BEZ, L_CODE, SPRACHE FROM Reisegebiete WHERE SPRACHE='DEUTSCH' Or SPRACHE='ENGLISCH' Operand in SELECT BEZ, L_CODE, SPRACHE FROM Reisegebiete WHERE SPRACHE in ('DEUTSCH','ENGLISCH') Operand between SELECT Name, Adresse, Umsatz from Kunden WHERE Umsatz between 4000 and 9999

10 Wilhelm Moser SQL - Structured Query Language SQL-DML - Funktionen & Wildcards Operand Like mit Wildcards SELECT * from Reisegebiete where Bez like 'M*I?' 10 Operand IS NULL SELECT NAME, ADRESSE FROM KUNDEN WHERE TELEFON IS NULL Funktion HEUTE mit IS NULL SELECT NAME, TELEFON, Format(Now(),"dd/mm/yy") AS HEUTE FROM KUNDEN WHERE TELEFON Is Null

11 Wilhelm Moser SQL - Structured Query Language SQL-DML - Inner Joins Wir wollen die bevorzugten Reisegebiete von Andrea wissen. Derzeit müßten wir wie folgt vorgehen: In [KUNDEN] die Nummer von Andrea suchen In [KUNDEN_GEBIETE] die Nummern aller Reisegebiete von Andrea suchen In [REISE_GEBIETE] die Nummern der Reisegebiete aufsuchen. 11 Now lets JOIN Tables SELECT REISEGEBIETE.BEZ FROM KUNDEN, KUNDEN_GEBIETE, REISEGEBIETE WHERE KUNDEN.NAME = 'ANDREA' AND KUNDEN.NR = KUNDEN_GEBIETE.K_NR AND KUNDEN_GEBIETE.G_NR = REISEGEBIETE.NR Durch diese Tabellenverknüpfung wird eine temporäre, relationale Verbindung hergestellt.

12 Wilhelm Moser SQL - Structured Query Language SQL-DML - Alias Namen Wozu ALIAS Namen ? 12 1.Bei Spaltenschönere Feldbezeichnung 2.Bei TabellenVerkürzung des Tabellennamens Beispiel: SELECT KUNDEN.NAME AS Vorname, INTERESSEN.BEZ as Interessen FROM (KUNDEN INNER JOIN KUNDEN_INTERESSEN ON KUNDEN.NR =KUNDEN_INTERESSEN.K_NR ) INNER JOIN INTERESSEN ON KUNDEN_INTERESSEN.I_NR = INTERESSEN.NR

13 Wilhelm Moser SQL - Structured Query Language SQL-DML - Self Join Versuchen wir, alle Kunden, die zusammen wohnen, auszufiltern. In diesem Fall müssen wir die gleiche Tabelle 2 x in unsere Abfrage einbeziehen. 13 Beispiel: SELECT K1.NAME, K2.NAME FROM KUNDEN K1, KUNDEN K2 WHERE K1.ADRESSE = K2.ADRESSE AND K1.NR <> K2.NR In Access gehts auch mit dem Assistenten mit Unterabfragen: (dazu später) SELECT DISTINCTROW KUNDEN.ADRESSE, KUNDEN.NAME FROM KUNDEN WHERE (((KUNDEN.ADRESSE) In (SELECT [ADRESSE] FROM [KUNDEN] As Tmp GROUP BY [ADRESSE] HAVING Count(*)>1 ))) ORDER BY KUNDEN.ADRESSE;

14 Wilhelm Moser SQL - Structured Query Language SQL-DML - Outer Join Die Idee des Joins ist nicht die wahllose Verbindung von Tabellen, sondern die Recordset - spezifische. Wenn wir für alle Kunden das LAND angeben wollen, müssen wir KUNDEN und LÄNDER verbinden. In dem Fall wird Claudia nicht mehr angezeigt, da dort ein unbekanntes Land steht. (Was mit referentieller Integrität ja nicht passieren dürfte) 14 Beispiel ohne Outer Join und ohne Claudia: SELECT K.NAME,L.BEZ FROM KUNDEN K, LÄNDER L WHERE K.L_CODE=L.Code Beispiel mit Outer Join und Claudia: SELECT K.NAME,L.BEZ FROM KUNDEN K, LÄNDER L WHERE K.L_CODE=L.Code(+) Soweit die Theorie. Die Syntax mag bei UNIX-INFORMIX Systemen aufgehen, der Dialekt von ACCESS läßt das jedenfalls nicht zu. Jedoch gibts dort sogenannte Left Joins & Right Joins

15 Wilhelm Moser SQL - Structured Query Language SQL-DML - Subqueries - Unterabfragen Ronnie beschließt eine Reise zu unternehmen und möchte in ein Land reisen, das auch Andrea besucht(e). 15 Beispiel einer Unterabfrage: SELECT G.BEZ FROM REISEGEBIETE AS G, GEBIETE_INTERESSEN AS GI WHERE GI.G_NR=G.NR AND GI.I_NR In (SELECT KI1.I_NR FROM KUNDEN_INTERESSEN KI1, KUNDEN K1 WHERE K1.NAME='ANDREA' AND KI1.K_NR=K1.NR ); Natürlich kann man solche Monster auch noch mit and Bedingungen verknüpfen und sogar abhängige Subqueries erstellen.

16 Wilhelm Moser SQL - Structured Query Language SQL-DML - Correlated Subqueries Versuchen wir das Beispiel der zusammen wohnenden RONNIE & JUDITH (Self Join) mit einer Unterabfrage zu lösen 16 Beispiel einer abhängigen Unterabfrage: SELECT K1.NAME FROM KUNDEN K1 WHERE EXISTS (SELECT K2.NAME FROM KUNDEN K2 WHERE K1.ADRESSE = K2.ADRESSE AND K1.NR <> K2.NR ); Hier und nur im Zusammenhang mit Subqueries wird der Operator EXISTS verwendet, um Fehler der Subquery auszuschalten. Exists ist dann wahr, wenn die Subquery zumindest eine Zeile zurückliefert.

17 Wilhelm Moser SQL - Structured Query Language SQL-DML - UNION-Klausel - Mengenvereinigung Mit UNION lassen sich beliebige mit SELECT erzeugte Mengen vereinigen. Die Spalten der einzelnen SELECTS müssen jedoch den selben DatenTyp besitzen. 17 Beispiel - eine Liste aller Interessen und aller Reisegebiete: SELECT INTERESSEN.BEZ FROM INTERESSEN UNION SELECT REISEGEBIETE.BEZ FROM REISEGEBIETE; Meiner Meinung nach ein gutes Mittel, um heillose Verwirrung in an sich strukturierte Logistik zu bringen. Diese beiden Datenarten haben in einer Spalte nichts verloren.

18 Wilhelm Moser SQL - Structured Query Language SQL-DML - ORDER BY & GROUP BY So, nun wirds Easy - Order by läßt uns Daten sortieren 18 Wir können praktisch nach jeder Abfrage das Statement...ORDER BY NAME ASC, ADRESSE DESC anbringen, wobei ASCending und DESCending für auf- oder absteigende Sortierung eingesetzt wird. GRUPPIERUNG, Das Zusammenfassen von Daten in Recordsets. Welche Herkunftsländer bringen welchen Umsatz. (Gruppierung der Kunden nach Herkunftsländern. SELECT KUNDEN.L_CODE, AVG(RB.KOSTEN) as A, SUM(RB.KOSTEN) as S FROM KUNDEN, REISE_BUCHUNG RB WHERE KUNDEN.NR=RB.K_NR GROUP BY KUNDEN.L_CODE;

19 Wilhelm Moser SQL - Structured Query Language SQL-DML - DISTINCT Statement Durch das Statement DISTINCT(ROW) läßt sich die Ausgabe doppelter Zeilen vermeiden: 19 SELECT L_CODE FROM KUNDEN;SELECT DISTINCT L_CODE FROM KUNDEN; liefert: AUTAUT AUTDEU DEUENG AUT ENG

20 Wilhelm Moser SQL - Structured Query Language SQL-DML - INSERT INTO - Anfügeabfrage Insert into ermöglicht dem Programmierer von 4GLs die Erfassung von Daten in der Datenbank. Meist ist das nicht nötig, da praktisch alle Programmiersprachen über Recordsets und rs.add / rs.update diese Funktionen automatisch bereitstellen und die Arbeit mit Recordsets einfacher und bekannter ist. 20 INSERT INTO KUNDEN (Name,Adresse,L_Code,Telefon,Geburtsdatum, Umsatz) VALUES ('RONNY','Palffygasse 8','AUT','111111',' ', 10000); ACHTUNG: In diesem Fall darf das Feld NR, das einen Autowertenthält, nicht angegeben werden !!!! Funktioniert mit MSQRY32.EXE, nicht aber direkt mit QBE-Access, erst nach erneutem Aufruf der gespeicherten Abfrage. Jede Kombination (Subqueries) ist möglich.

21 Wilhelm Moser SQL - Structured Query Language SQL-DML - UPDATE - Aktualisierungsabfrage Update ermöglicht dem Programmierer von 4GLs die Ergänzung von Daten in der Datenbank. Meist ist das nicht nötig, da praktisch alle Programmiersprachen über Recordsets und rs.edit / rs.update diese Funktionen automatisch bereitstellen und die Arbeit mit Recordsets einfacher und bekannter ist. 21 UPDATE KUNDEN SET ADRESSE = 'Hauptstraße 125', TELEFON = ' ' WHERE KUNDEN.NAME = 'MARKUS' ACHTUNG: In diesem Fall darf das Feld NR, das einen Autowertenthält, nicht angegeben werden !!!! natürlich ist auch hier jede Kombination (Subqueries) möglich.

22 Wilhelm Moser SQL - Structured Query Language SQL-DML - DELETE - Löschabfrage Update ermöglicht dem Programmierer von 4GLs die Ergänzung von Daten in der Datenbank. Meist ist das nicht nötig, da praktisch alle Programmiersprachen über Recordsets und rs.edit / rs.update diese Funktionen automatisch bereitstellen und die Arbeit mit Recordsets einfacher und bekannter ist. 22 DELETE FROM KUNDEN WHERE NR = 3; oder DELETE FROM KUNDEN WHERE NAME = 'MARKUS'; ACHTUNG: In diesem Fall darf das Feld NR, das einen Autowertenthält, angegeben werden !!!! natürlich ist auch hier jede Kombination (Subqueries) möglich.

23 Wilhelm Moser SQL - Structured Query Language SQL-DML - Zusammenfassung Das Thema ist so umfangreich, daß nur die ständige Beschäftigung die notwendige Routine mit sich bringen kann. Fallweise Tätigkeiten sind eher mühsam und bedürfen des oftmaligen Nachschlagens in der Syntax der jeweiligen Datenbank, die mit SQL-DDL angesprochen wird Hier ein Leitfaden für die Problembehandlung: 1.Zuerst die Information suchen, die ausgegeben werden soll. 2.Zugehörige Tabellen und Spalten suchen. 3. Verbindung der Tabellen (graphisch) darstellen. 4.Gruppierungen formulieren 5.Suchordnung erstellen 23 Wenn irgend möglich, lassen Sie doch die QBE-Umgebung von ACCESS die Abfragen für Sie formulieren und konvertieren Sie diese dann in Ihre Programmierumgebung oder Ihren Abfragegenerator. ( Die Abfrageassistenten von ACCESS sind wirklich gut)

24 Wilhelm Moser SQL - Structured Query Language SQL-DDL - Data Definition Language 24 Data Definition Language ist das Tool zum Erstellen, Löschen und Ändern von Tabellen, Indizes und Ansichten (Views). Meist werden diese Änderungen NICHT durch den Programmierer, sondern den Datenbankadministrator am Server (SQL, ORACLE, INFORMIX....) vorgenommen. Aus gutem Grund. Sollen doch die Änderungen konstistent und daher möglichst zentral erfolgen. Wir werden nur die minimalen Möglichkeiten behandeln, da jede Datenbank andere Dialekte und Möglichkeiten anbietet.

25 Wilhelm Moser SQL - Structured Query Language SQL-DDL - Tabellen - Allgemeines & Schlüssel 25 Tabellen besitzen Spalten und Zeilen. Die Spalten müssen einem bestimmten Datentyp zugeordnet sein. Eine Tabelle kann einen Primärschlüssel und mehrere Fremdschlüssel haben. Dies dient zur Konsistenzsicherung in der Datenbank und ist oft fester Bestandteil der Tabellen- definition. Eine Tabelle kann mehrere Fremdschlüssel haben. Fremdschlüssel können NULL Werte enthalten. Fremdschlüssel gelten als NULL wenn zumindest eine Spalte des Schlüssels NULL ist. Eindeutige Schlüssel (Unique Keys) können mehrfach vorhanden sein.

26 Wilhelm Moser SQL - Structured Query Language SQL-DDL - Tabellen - CREATE TABLE 26 Nachdem man alle Tabellenstrukturen mit dem ERM oder eher RM konzipiert hat (Auf dem Papier), legt man die Tabellen physisch an. Die On Delete Bedingung bewirkt das Löschen der entsprechenden Spalten dieser Tabelle, wenn dazugehörige Recordsets der Muttertabelle gelöscht werden. Diese semantischen Restriktionen erzielen die Konsistenz der Datenbank und es wird verhindert, daß in der Tabelle KUNDEN_INTERESSEN Kundenummern vorhanden sind, die in der Tabelle KUNDEN nicht mehr existieren. Beispiel: (Nur bei Server-Datenbanken nicht bei Access möglich - zu komplex ) Die Tabelle KUNDEN_INTERESSEN hat einen Primary Key und 2 Foreign Keys CREATE TABLE KUNDEN_INTERESSEN ( K_NRNUMBERNOT NULL, I_NRNUMBERNOT NULL, PRIMARY KEY (K_NR,I_NR), FOREIGN KEY KEY_KUNDEN (K_NR) REFERENCES KUNDEN ON DELETE RESTRICT, FOREIGN KEY KEY_INTERESSEN (I_NR) REFERENCES INTERESSEN ON DELETE RESTRICT ); Access SELECT [K_NR] AS A1, [I_NR] AS A2 INTO KUNDEN_INTERESSEN GROUP BY [K_NR], [I_NR];

27 Wilhelm Moser SQL - Structured Query Language SQL-DDL - Tabellen - ALTER & DROP TABLE 27 Also, nachdem wir soweit gekommen sind ist das folgende ja wohl ein Klacks: ADDSpalten hinzufügen ALTER TABLE KUNDEN ADD FAX CHAR(25) NOT NULL; DROPSpalten / Tabellen löschen ALTER TABLE KUNDEN DROP GEBURTSDATUM; DROP TABLE KUNDEN; RENAMESpalten umbenennen ALTER TABLE KUNDEN RENAME ADRESSE STRASSE; (nicht in Access) MODIFYSpalten ändern ALTER TABLE KUNDEN MODIFY NAME CHAR(50) NOT NULL; (nicht in Access)

28 Wilhelm Moser SQL - Structured Query Language SQL-DDL - Indizes - Allgemeines 28 Stellen wir uns einen Index wie ein Telefonregister vor: A-Z ist unser INDEX. Um leichteren Zugriff zu haben müssen wir bei der Tabellenerstellung INDIZES angeben. Nach der Erstellung übernimmt die Verwaltung der Optimizer des RDBMS. Der Datenbankadministrator muß allerdings für den richtigen Einsatz der INDIZES bei einem Projekt sorgen. Regeln bei der Erstellung von INDIZES: 1.Pro Tabelle zumindest ein INDEX. 2.Pro Primary Key sollte ein Unique Index generiert werden. 3.Pro Foreign Key sollte ein Index generiert werden. 4.Oft gelesene Tabellen = viele Indizes. 5.Oft geschriebenen Tabellen = wenige Indizes.

29 Wilhelm Moser SQL - Structured Query Language SQL-DDL - Indizes - Create & Drop 29 Auch bei Create Index kann man bei der Definition angeben, ob der Index aufsteigend oder absteigend sortiert werden soll. (Default aufsteigend) UNIQUE INDEX bedeutet, daß die Indexspalten eindeutig sein müssen. Der Name des INDEX muß in der Datenbank eindeutig sein. CREATE UNIQUE INDEX KUNDEN_I1 ON KUNDEN (NAME); CREATE INDEX KUNDEN_I2 ON KUNDEN (L_Code, Geburtsdatum); DROP INDEX KUNDEN_I1 ON KUNDEN;

30 Wilhelm Moser SQL - Structured Query Language SQL-DDL - Views - Allgemeines ( Server based ) 30 Mit Views können logische Ansichtsfenster über eine Tabelle gelegt werden. Der Anwender erhält verschiedene Sichtweisen der Tabelle. Zugriffsschutz durch Teilansicht der Tabelle erlaubt eine vereinfachte Schreibweise für komplizierte Tabellenverknüpfungen Views können wie Tabellen verwendet werden, speichern aber keine Daten. EIGENSCHAFTEN von VIEWs: referenziert Daten - Änderung der Tabelle = Änderung des Views Die Daten einer View kann man nur ändern, wenn sie einer Tabelle zugeordnet sind, sonst nur LESEN. Verbraucht minimalen Speicherplatz.

31 Wilhelm Moser SQL - Structured Query Language SQL-DDL - Views - Create & Drop View ( Server based ) 31 ViewS entsprechen bei der dynamischen Frontendverwaltung von Access dem QBE-Bereich zur Erstellung von Recordsets vom Typ Dynaset oder Snapshot. Durch die umfassenden Möglichkeiten von Access ist die VIEW in der ANSI- Standard Form in Access nicht vorgesehen. Hier zwei Beispiele für Server basierte Views in create & drop CREATE VIEW KUNDENINT ( KUNDEN, INTERESSEN) AS SELECT K.NAME, I.BEZ FROMKUNDEN K, KUNDEN_INTERESSEN KI, INTERESSEN I WHEREK.NR = KI.K_NR AND KI.I_NR = I.NR; DROP VIEW KUNDENINT;

32 Wilhelm Moser SQL - Structured Query Language SQL-DCL - Data Control Language 32 Wohl ein wichtiger Bereich für Transaktionen und Privilegien die im ACCESS Bereich die MS-Jet Engine oder ODBC zur Verfügung stellt. Transaktionen Befehlsfolgen werden in logische Bereiche (Transaktionen) zusammengefaßt. Eine Transaktion beginnt mit dem SQL-Befehl und endet mit COMMIT oder ROLLBACK, dann beginnt die nächste Transaktion. Auf simpel: üblicherweise werden Recordsets nach Bearbeitung en Block gespeichert, oder bei Fehlern überhaupt nicht (Stromausfall). Gerade dieser Bereich hat sich in den letzten Monaten durch DAO, ODBC, RDO, ADO und MS-Jet Engine so verändert, daß Standards kaum mehr zu erkennen sind. Die Jet-Engine verwendet z.B.: die Syntax BeginTrans & CommitTrans mit anderen Parametern bzw. Funktionsdefinitionen.

33 Wilhelm Moser SQL - Structured Query Language SQL-DCL - COMMIT & ROLLBACK 33 Hier also ein Beispiel für Server based commit: DELETE FROM KUNDEN WHERE NR = 3; DELETE FROM KUNDEN_GEBIETE WHERE K_NR = 3; DELETE FROM KUNDEN_INTERESSEN WHERE K_NR = 3; COMMIT Das bedeutet, daß erst bei erfolgreichem commit die Transaktion abgeschlossen wird. Nun ja, ROLLBACK (zurückrollen) heißt dann wohl alles bis zum letzten commit aufrollen und rückgängig machen.

34 Wilhelm Moser SQL - Structured Query Language SQL-DCL - Summary 34 Beispiel für die Data Control Language sind die Fähigkeiten der MS-JET Engine (ODBC - mit dem man alle Datenbanken ansprechen kann funktioniert auf VB, ACCESS oder C++ Ebene ähnlich). Das DB Engine-Objekt enthält die folgenden Auflistungen, Methoden und Eigenschaften. Auflistungen Errors Properties Workspaces (Voreinstellung) Eigenschaften DefaultPassword DefaultType DefaultUser IniPath LoginTimeout SystemDB Version Methoden BeginTrans CommitTrans CompactDatabase CreateDatabase CreateWorkspace Idle OpenConnection OpenDatabase RegisterDatabase RepairDatabase Rollback SetOption nur in MS Jet-Arbeitsbereichen nur in ODBCDirect-Arbeitsbereichen

35 Wilhelm Moser SQL - Structured Query Language 35 aber das können Sie ja bereits... Sie waren ein Publikum Danke schön, bezauberndes auf wiedersehen bei weiteren interessanten Kursen...

36 Wilhelm Moser SQL - Structured Query Language 36 P A U S E ! und nach der Pause ? noch viel interessantere Dinge.....


Herunterladen ppt "Wilhelm Moser SQL - Structured Query Language Herzlich ! Herzlich willkommen ! 1."

Ähnliche Präsentationen


Google-Anzeigen