Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Einführung in die Meteorologie (met211) - Teil VI: Dynamik der Atmosphäre - Teil VII: Synoptik Clemens Simmer.

Ähnliche Präsentationen


Präsentation zum Thema: "Einführung in die Meteorologie (met211) - Teil VI: Dynamik der Atmosphäre - Teil VII: Synoptik Clemens Simmer."—  Präsentation transkript:

1 Einführung in die Meteorologie (met211) - Teil VI: Dynamik der Atmosphäre - Teil VII: Synoptik
Clemens Simmer

2 VI Dynamik der Atmosphäre
Dynamische Meteorologie ist die Lehre von der Natur und den Ursachen der Bewegung in der Atmosphäre. Sie teilt sich auf in Kinematik und Dynamik im engeren Sinne Kinematik Massenerhaltung -> Kontinuitätsgleichung (4. meteorol. Grundgl.) Stromlinien und Trajektorien Die Bewegungsgleichung Navier-Stokes-Gleichung Skalenanalyse (geostrophischer Wind+statische Grundgleichung) Zweidimensionale Windsysteme natürliches Koordinatensystem und geostrophischer Wind Gradientwind und andere

3 VII Synoptische Meteorologie
Synoptik ist die Zusammenschau der Wettervorgänge in Raum und Zeit mit dem Ziel der Wetteranalyse und Wettervorhersage. Die Synoptik ist Teil der Angewandten Meteorologie. 1. Allgemeines - Darstellungsweisen/Wetterkarten - dreidimensionale Sicht – thermischer Wind 2. Synoptische Systeme mittlerer Breiten - verschiedene Skalen - Wie entstehen Tiefs und Hochs? - Frontentheorien

4 VI.1 Kinematik Die Kinematik befasst sich mit der Analyse und Struktur von Windfeldern unter Berücksichtigung der Massenerhaltung, ohne Betrachtung der Ursachen (Kräfte). Windfelder lassen sich charakterisieren durch ihre Divergenz : Volumen von Luftkörpern wachsen oder schrumpfen. Rotation : Luftkörper drehen sich im Raum. Deformation : Luftkörper ändern ihre Form.

5 VI.1.1 Divergenz und Massenerhaltung
Die Divergenz eines Windfeldes quantifiziert das Zusammen- (Konvergenz, negative Divergenz) oder Auseinanderströmen (Divergenz) der Luft. Bei Beschränkung auf die horizontalen Windkomponenten wird der Zusammenhang zwischen Form des Strömungsfeldes und Divergenz unmittelbar deutlich. y t=0 t=t1 x < > < 0

6 Beispiele zur Divergenz

7 Divergenz und Massenerhaltung (1)
V, m, ρ=m/V Mi Ein Nettomassenfluss M durch die festen Volumenberandungen führt zu einer Massen- und damit Dichteänderung innerhalb des Volumens:

8 Divergenz und Massenerhaltung (2)
x y z Δy Δz Δx Ein Würfel sei mit seinen Kanten parallel zu den Koordinatenachsen ausgerichtet. Es gelten folgende Bezeichnungen für Randflächen und die Windkomponenten aus dem Volumen und senkrecht zu den Randflächen 𝐹 𝑥 + , 𝐹 𝑥 − , 𝐹 𝑦 + , 𝐹 𝑦 − , 𝐹 𝑧 + , 𝐹 𝑧 −

9 Taylor Entwicklung Benötigt man eine Näherung einer Funktion f an einer Stelle x, die nahe an einer Stelle x0 liegt, bei der man die Funktion exakt kennt, so kann man f(x) auch schreiben als:

10 Divergenz und Massenerhaltung (3)
x y z Δy Δz Δx …analog für die zwei anderen Richtungen durchführen, also insgesamt: Kontinuitätsgleichung (Massenerhaltung)

11 Eulersche und Lagrangesche Kontinuitätsgleichung
Euler‘sche Zerlegung für ρ: Euler‘sche Kont‘gleichung: Umrechnung: Lagrange‘sche Kont‘gleichung

12 Sonderfall: Inkompressibles Medium
Ein Medium ist inkompressibel, wenn man es weder zusammenpressen noch auseinander ziehen kann (z.B. näherungsweise Wasser). Dabei kann es durchaus seine Form verändern oder im Inneren inhomogen sein (veränderliche Dichte, z.B. eine Wasser-Öl-Mischung). Auch Luft kann für bestimmte Betrachtungen in guter Näherung als inkompressibel angenommen werden. Dann gibt es z.B. keine Ausdehnung beim Aufsteigen, keine Schallwellen (Vereinfachung der Numerik bei Modellen). Man macht daher die Annahme der Inkompressibilität oft bei der Beschreibung der Strömungsprozesse bei relativ geringen und langsamen Vertikalauslenkungen, z.B. Strömungen in der Grenzschicht. Es gilt dann offensichtlich: beachte aber: dicht dünn

13 Konvergenz und Vertikalgeschwindigkeit (1)
Nehmen wir Inkompressibilität an, so folgt aus dem Zusam-menströmen von Luft in der Horizontalen (horizontale Konver-genz), dass die Luft in vertikaler Richtung ausweichen muss. Erfolgt dabei die horizonale Konvergenz am Boden, so muss die Luft durch Aufsteigen nach oben ausweichen. Bodennahe horizontale Konvergenz erzwingt Aufsteigen darüber. Bodennahe horizontale Divergenz erzwingt Absteigen darüber. h Beispiel: Küstenkonvergenz © Mario Lehwald

14 Konvergenz und Vertikalgeschwindigkeit (2)
h Gehen wir weiter von stationären Verhältnissen aus (∂/∂t=0), und dass w sich nur vertikal verändert (∂z→dz), so kann man die Gleichung integrieren. → Am Boden (h=0) ist w=0; w nimmt linear mit der Höhe zu. Beispiel Küstenkonvergenz: Der Horizontalwind (nur x-Richtung) nehme über einen Kilometer in einer Schicht von 1 km Dicke im Mittel um 1 m/s ab. Wie groß ist die Hebungsgeschwindigkeit in 1 km Höhe?

15 Beispiel: Aufsteigen in Tiefs und Absteigen in Hochs
Konvergenz und Vertikalgeschwindigkeit (3) Beispiel: Aufsteigen in Tiefs und Absteigen in Hochs H T Beobachtung: In Hochs ist der bodennahe Windvektor leicht aus dem Hoch heraus gerichtet. Aus Kontinuitätsgründen muss Luft (bei stationären Verhältnissen) im Hoch absinken Beobachtung: In Tiefs ist der bodennahe Windvektor leicht in das Tief hinein gerichtet Aus Kontinuitätsgründen muss Luft (bei stationären Verhältnissen) im Tief aufsteigen. Vorgriff: Das bodennahe Ausströmen im dynamischen Hoch bzw. Einströmen im dynamischen Tief folgt aus Kon- bzw. Divergenzen in der Höhe und der bodennahen Reibung.

16 Horizontale Divergenz und Drucktendenz (∂p/∂t)
Konvergenz und Vertikalgeschwindigkeit (4) Horizontale Divergenz und Drucktendenz (∂p/∂t) z, a) b) c) →Eine Druckzunahme in der Höhe z kann verursacht werden durch: Advektion von dichterer Luft in der Luft darüber horizontale Konvergenz in der Luft darüber Aufsteigen von Luft durch die Höhe z Beispiel Küstenkonvergenz: Berechne Druckzunahme am Boden

17 Konvergenz und Konfluenz
Von Null verschiedene Konvergenz lässt ein Strömungsvolumen wachsen oder schrumpfen – die Dichte nimmt dabei ab bzw. zu. Bei zweidimensionaler Konvergenz gilt der Zusammenhang mit Dichteänderungen nicht zwingend, da wir nicht wissen, was in der vertikalen Dimension passiert. Das Volumen könnte sich z.B. nach oben ausdehnen. Konfluenz und Diffluenz (auch Richtungskonvergenz bzw. –divergenz) bezeichnen das Konvergieren oder Divergieren der Strömungs-richtungen (unabhängig von der Strömungsgeschwindigkeit). Konfluente oder diffluente Strömungen können konvergent oder divergent sein! Das gilt in 2D und in 3D. Beispiel: 2D-Strömung mit Konfluenz und Diffluenz, aber verschwindender Divergenz (angedeutet durch gleichbleibendes Volumen). Es gleichen sich jeweils Richtungs- und Geschwindigkeitskonvergenz gerade aus.

18 Flächenmittel der horizontalen Divergenz und der Integralsatz von Gauss (1)
Die 2D-Divergenz eines Windfeldes ist offensichtlich eine wichtige Eigenschaft, die insbesondere Wetter-relevante Vertikalgeschwindigkeiten beeinflusst. Die Berechnung der Divergenz benötigt ein kontinuierliches Feld, da der Nabla-Operator ein differentieller Operator ist. Bei Messungen und Modellen sind die Felder der meteorologischen Größen nur an verteilten Punkten bekannt, also diskret und nicht kontinuierlich. Der Integralsatz von Gauss (hier nur in 2 Dimensionen für die horizontale Divergenz, gilt analog aber auch für 3D mit F→V, s(F)→F(V) ) verbindet die differenzielle Formulierung mit einer integralen Formulierung. s(F) x y F ds .

19 Flächenmittel der horizontalen Divergenz und der Integralsatz von Gauss (2)
x y F a b c d Δx Δy Die seien Positionen, an denen der Wind gemessen (oder modelliert) wird. Man denkt sich ein Rechteck (gestrichelt), das die Stationen wie angedeutet verbindet. Anmerkung: Grenzwertbildung bei D hinter dem letzten Gleichheitszeichen (Klammer [ ]) führt mit ∆x,∆y→0 wieder zurück zur Definition der Divergenz, womit der Satz von Gauss indirekt bewiesen ist.

20 Übung zu VI.1.1 (a) x y F a b c d Δx=100 km Δy=50 km 4 m/s, 60° 10 m/s
90° 4 m/s, 120° 8 m/s Schätze die mittlere horizontale Divergenz D für nebenstehende Beobachtungen ab. Wie ändern sich die Werte, wenn wegen Messfehler tatsächlich an der Westseite die Windstärke 1 m/s höher und an der Ostseite 1 m/s niedriger ist? Im Zentrum eines Tiefdruckgebietes sei der Vertikalwind in 1000 m Höhe 1 cm/s. Wie groß ist dort dann die mittlere horizontale Divergenz zwischen Boden und 1000 m unter Annahme inkompressibler Luft? Im Windfeld von 3. liege bei 1000 m die Unterkante einer Wolkenschicht. Es herrsche dort eine Temperatur von 10°C. Berechne die Niederschlagsmenge in mm/h unter der Annahme, dass alles beim Aufsteigen kondensierende Wasser sofort ausfällt (der Sättigungsdampfdruck von Wasser bei 10°C ist ,2 hPa; die Gaskonstante von Wasserdampf ist 461 J/(kg K)).


Herunterladen ppt "Einführung in die Meteorologie (met211) - Teil VI: Dynamik der Atmosphäre - Teil VII: Synoptik Clemens Simmer."

Ähnliche Präsentationen


Google-Anzeigen