Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

1 Grundlagen – raumliche Vorstellung Der Würfel und seine Folgen … Folgende Teile der Präsentation: Ansichten Schrägriss Abbildungsebenen Gedanken zum.

Ähnliche Präsentationen


Präsentation zum Thema: "1 Grundlagen – raumliche Vorstellung Der Würfel und seine Folgen … Folgende Teile der Präsentation: Ansichten Schrägriss Abbildungsebenen Gedanken zum."—  Präsentation transkript:

1 1 Grundlagen – raumliche Vorstellung Der Würfel und seine Folgen … Folgende Teile der Präsentation: Ansichten Schrägriss Abbildungsebenen Gedanken zum Sehen, optische Täuschungen Koordinatensystem Dreieck im Raum Prisma im Raum

2 2 Grundlagen – raumliche Vorstellung Was ist zu sehen? Ansichten

3 3 Grundlagen – raumliche Vorstellung Was ist zu sehen? Drei Linien, die zu einem Punkt führen? Ein Y-förmiges Gebilde? Drehflügel eines Windkraftwerkes? Ansichten

4 4 Grundlagen – raumliche Vorstellung Was ist zu sehen? Ansichten

5 5 Grundlagen – raumliche Vorstellung Was ist zu sehen? Eine Sechseck? Eine Bienenwabe? Ein sechseckiger Tisch von oben? Ansichten

6 6 Grundlagen – raumliche Vorstellung Was ist zu sehen? Ansichten

7 7 Grundlagen – raumliche Vorstellung Was ist zu sehen? Wahrscheinlich war die Antwort: Ein Würfel. Es ist ein Sechseck, indem ein Y-förmiges Gebilde im Zentrum ist. Ansichten

8 8 Grundlagen – raumliche Vorstellung Es handelt sich um eine zweidimen- sionale Darstellung und ein Würfel ist ein dreidimensionaler Körper! Das Papier, der Bildschirm oder die Leinwand ist zweidimensional (flach). Aber es ist eine Abbildung eines Würfels. Seit unserer Kindheit wissen wir, dass Würfel, die wir in den Fingern gedreht und mit den Lippen abgetastet haben, so aussehen, wie die Abbildung oben. Ansichten

9 9 Grundlagen – raumliche Vorstellung Was ist zu sehen? Ansichten

10 10 Grundlagen – raumliche Vorstellung Was ist zu sehen? Drei gleichseitige Parallelogramme mit gleichen Seiten, diese werden auch Rhomben genannt. Ansichten

11 11 Grundlagen – raumliche Vorstellung Werden die Rhomben so zusam- mengeschoben, dass ein Dreieck in deren Mitte entsteht, ist eine symmetrische Figur entstanden. Es sieht einem Firmenlogo ähnlich. Ansichten

12 12 Grundlagen – raumliche Vorstellung Werden die Rhomben so zusam- mengeschoben, dass ein Dreieck in deren Mitte entsteht, ist eine symmetrische Figur entstanden. Es sieht einem Firmenlogo ähnlich. Werden drei Flächen eingefärbt …… Ansichten

13 13 Grundlagen – raumliche Vorstellung Werden die Rhomben so zusam- mengeschoben, dass ein Dreieck in deren Mitte entsteht, ist eine symmetrische Figur entstanden. Es sieht einem Firmenlogo ähnlich. Werden drei Flächen eingefärbt entsteht eine Abbildung zweier senkrechter, grauer Flächen, von der eine weiße Fläche oben rechtwinkelig nach hinten und eine dunkel- graue Fläche nach vorne abgewinkelt ist. Ansichten

14 14 Grundlagen – raumliche Vorstellung Werden die Flächen anders ein- gefärbt ergibt sich eine Abbildung einer anderen räumlichen Figur. Ein horizontales, weißes Quadrat gemeinsam mit einem Dreieck. Von Letzterem ist ein hellgraues Quadrat nach links unten und ein etwas dunkleres Quadrat unter 45° rechts nach oben geklappt (wie Papschachteldeckel). Es gibt auch noch andere vorstellbare Figuren. Ansichten

15 15 Grundlagen – raumliche Vorstellung Zurück zu unseren drei Rhomben und einem Würfel, der mit diesen abgebildet werden könnte …... Ansichten

16 16 Grundlagen – raumliche Vorstellung Zurück zu unseren drei Rhomben und einem Würfel, der mit diesen abgebildet werden könnte, wenn die Rhomben entsprechend zu- sammengesetzt werden. Ansichten

17 17 Grundlagen – raumliche Vorstellung Zurück zu unseren drei Rhomben und einem Würfel, der mit diesen abgebildet werden könnte, wenn die Rhomben entsprechend zu- sammengesetzt werden. Etwas eingefärbt sieht die Abbildung des Würfels viel räumlicher aus. Ansichten

18 18 Grundlagen – raumliche Vorstellung Das Abbild eines etwas gedrehten Würfels ist ebenfalls räumlich leicht vorstellbar. Hier wurden auch die unsichtbaren Seitenkanten strichliert dargestellt. Ansichten

19 19 Grundlagen – raumliche Vorstellung Diese Art der Abbildung wird Schrägriss genannt, weil in der Abbildung der Würfel von schräg rechts oben dargestellt wird. Damit kann von dem Würfel die Vorderansicht (hellgrau), die Seitenansicht (dunkelgrau) und die Ansicht von oben gezeigt werden (weiß). Schrägriss

20 20 Grundlagen – raumliche Vorstellung Diese Art der Abbildung wird Schrägriss genannt, weil in der Abbildung der Würfel von schräg. rechts oben dargestellt wird. Mit den unsichtbaren Kanten (strichliert gezeichnet) sind auch die Unterseite, die Ansicht von der anderen Seite und die Rückseite hinter dem Würfel quasi zu sehen. Schrägriss

21 21 Grundlagen – raumliche Vorstellung Nun ist eine Abbildung eines Wür- fels zu sehen, bei dem links, oben, vorne eine schräge Fläche und rechts, unten, hinten, ein kleiner Würfel herausgeschnitten wurde. Auch in dieser Abbildung sind mit den unsichtbaren Linien und Kanten die Unterseite, die linke Seitenfläche und die Rückseite zu erkennen. Schrägriss

22 22 Grundlagen – raumliche Vorstellung Mit ein wenig Schattierung ist die Abbildung viel leichter räumlich zu sehen. Es ist einen Versuch wert, die Abbildung länger zu betrachten und sich den Würfel von allen Seiten vorzustellen; z. B. von links, oben oder von rechts unten, oder rechts, hinten, unten. Schrägriss

23 23 Grundlagen – raumliche Vorstellung Mit ein wenig Schattierung ist die Abbildung viel leichter räumlich zu sehen. Es ist einen Versuch wert, die Abbildung länger zu betrachten und sich den Würfel von allen Seiten vorzustellen; z. B. von links, oben oder von rechts unten, oder rechts, hinten, unten. Dafür ist ausreichend Zeit nötig. Schrägriss

24 24 Grundlagen – raumliche Vorstellung Diese Art der Abbildung von dreidimen- sionalen Körpern, der Schrägriss, ist nur eine Möglichkeit Körper auf Flächen darzustellen. In der Technik wird vorwiegend die Abbil- dung auf zwei (oder drei) Abbildungsebenen verwendet. Dazu werden Körper von vorne und von oben abgebil- det, manchmal auch noch zusätzlich von der Seite. Schrägriss

25 25 Grundlagen – raumliche Vorstellung Dieser bearbeitete Würfel soll in Abbildungsebenen dargestellt werden. Abbildungsebenen

26 26 Grundlagen – raumliche Vorstellung Abbildungsebenen Dieser bearbeitete Würfel soll in Abbildungsebenen dargestellt werden. Dazu wird auf einer Parallel- ebene die Vorderansicht abgebildet …

27 27 Grundlagen – raumliche Vorstellung Dieser bearbeitete Würfel soll in Abbildungsebenen dargestellt werden. Dazu wird auf einer Parallel- ebene die Vorderansicht abgebildet, auf eine weitere die Ansicht von oben ….. Abbildungsebenen

28 28 Grundlagen – raumliche Vorstellung Dieser bearbeitete Würfel soll in Abbildungsebenen dargestellt werden. Dazu wird auf einer Parallel- ebene die Vorderansicht abgebildet, auf eine weitere die Ansicht von oben und auf eine weitere die Ansicht von rechts. Abbildungsebenen

29 29 Grundlagen – raumliche Vorstellung Hier nochmals alle drei Ansichten von vorne, oben und von rechts. Die unsichtbaren Kanten und Linien werden auch in die Abbildungen übertragen. Dadurch kann auch jeweilshinter und in die Körper gesehen werden. Abbildungsebenen

30 30 Grundlagen – raumliche Vorstellung Diese Abbildungsebenen werden auch Aufriss für die Ansicht von vorne, Grundriss für die Ansicht von oben und Seitenriss (früher Kreuz- riss) für die Ansicht von der Seite (in diesem Beispiel von rechts) genannt. Abbildungsebenen

31 31 Grundlagen – raumliche Vorstellung Die Abbildungsebenen werden zusammen- geschoben und ergeben ein ……. Abbildungsebenen

32 32 Grundlagen – raumliche Vorstellung Die Abbildungsebenen werden zusammen- geschoben und ergeben ein Koordinatensystem mit den Achsen X (vorne- hinten), Y (rechts-links) und Z (oben-unten). Dieses Koordinatensystem ist aber auch noch räumlich und hilft nicht bei der flächenhaften Darstellung auf Papier oder Bildschirm. Abbildungsebenen

33 33 Grundlagen – raumliche Vorstellung Um eine flächenhafte Dar- stellung zu erreichen wer- den alle Abbildungsebenen in die eine Fläche geklappt. Dadurch wird die X-Achse zweimal aufgetragen. Abbildungsebenen

34 34 Grundlagen – raumliche Vorstellung Die Abbildungsebenen haben auch noch weitere Bezeich- nungen. Die Ansicht von vorne wird im Aufriss dargestellt und mit 2 bezeichnet. Die Ansicht von oben wird im Grundriss dargestellt und auch bezeichnet. Die Ansicht von rechts wird im Seitenriss dargestellt und auch bezeichnet. Abbildungsebenen

35 35 Grundlagen – raumliche Vorstellung Die Abbildungsebenen können auch von einander mit Abstand getrennt gezeichnet werden. Der Vergleich der Abbildun- gen mit der Schrägrissdar- stellung hilft die räumliche und die flächenhafte Dar- stellung in Zusammenhang zu bringen. Abbildungsebenen

36 36 Grundlagen – raumliche Vorstellung Gedanken zum Sehen Die optische Wahrnehmung (Auge, Sehnerv und Seh- zentrum im Gehirn) des Menschen (und der Tiere) dienen wie alle Sinnesfunktionen (Hören, Riechen, Schmecken, Fühlen) rein biologisch in erster Linie um Nahrung und Partner zu finden und Gefahren zu erkennen*. Alles Schöne, wie bildende Kunst, Musik und kulinarische Genüsse werden aber auch mit unseren Sinnen wahrgenommen und erfreuen uns. Somit wird auch jeder optische Eindruck zuerst auf diese drei Grundanfor- derungen geprüft. Alles was wir nicht erkennen können, wird daher unter Gefahr eingereiht und eine Lösung zum Entkommen aus der Gefahr gesucht. *Manchmal werden DG-Aufgaben als Gefahr betrachtet!

37 37 Grundlagen – raumliche Vorstellung Räumliches Erkennen ist ein Teil dieser optischen Wahrnehmung und wir lernen es vom Babyalter an. Babies führen alle Gegenstände zum Mund und ertasten mit den sehr sensiblen Lippen das, was sie sich danach ansehen. Das komplexe räumliche Verständnis (aus den verschiedensten Darstellungen heraus) ist erst mit etwa 17 Jahren abgeschlossen. Hier ein Beispiel, wie sehr uns Unbekanntes oder Unmögliches beunruhigt. Gedanken zum Sehen

38 38 Grundlagen – raumliche Vorstellung Dieser U-förmige Gegenstand ist leicht zu erkennen. Gedanken zum Sehen

39 39 Grundlagen – raumliche Vorstellung Dieser U-förmige Gegenstand ist leicht zu erkennen. Auch dieser Gegenstand ist leicht zu erkennen und vorstellbar. Gedanken zum Sehen

40 40 Grundlagen – raumliche Vorstellung Dieser U-förmige Gegenstand ist leicht zu erkennen. Auch dieser Gegenstand ist leicht zu erkennen und vorstellbar. Die Kombination aus beiden Gegen- ständen ist in der Wirklichkeit nicht möglich. Gedanken zum Sehen

41 41 Grundlagen – raumliche Vorstellung Dieser unmögliche Gegenstand lässt den Betrachter ständig von links oben nach rechts unten blicken und wür- den die Gehirnströme dabei gemessen werden, würde eine hohe Aktivität erkennbar sein. Der Gegenstand wird als Gefahr erkannt. Dieser Gegenstand könnte auch nie gefertigt werden, aber als flächenhafte Darstellung im Schrägriss, können auch unmögliche Körper dargestellt werden. Gedanken zum Sehen

42 42 Grundlagen – raumliche Vorstellung Auch dieser unmögliche Gegenstand lässt den Betrachter ständig von links oben nach rechts unten blicken. Ein besonderer Künstler, der Abbildungen von unmög- lichen dreidimensionalen Objekten in großen Anzahl hergestellt hat ist M. C. Escher Gedanken zum Sehen

43 43 Grundlagen – raumliche Vorstellung Nun wieder zurück zu der Darstellung von Würfel im Koordinatensystem. Koordinatensystem

44 44 Grundlagen – raumliche Vorstellung Koordinatensystem In der Schrägrissdarstellung wird der rechte, vordere, obere Punkt markiert.

45 45 Grundlagen – raumliche Vorstellung Koordinatensystem In der Schrägrissdarstellung wird der rechte, vordere, obere Punkt markiert. Im Grundriss ist dieser Punkt nun zu sehen.

46 46 Grundlagen – raumliche Vorstellung Koordinatensystem In der Schrägrissdarstellung wird der rechte, vordere, obere Punkt markiert. Im Grundriss ist dieser Punkt nun zu sehen. Nun auch im Aufriss und ….

47 47 Grundlagen – raumliche Vorstellung Koordinatensystem In der Schrägrissdarstellung wird der rechte, vordere, obere Punkt markiert. Im Grundriss ist dieser Punkt nun zu sehen. Nun auch im Aufriss und im Seitenriss.

48 48 Grundlagen – raumliche Vorstellung Koordinatensystem In der Schrägrissdarstellung wird der rechte, vordere, obere Punkt markiert. Im Grundriss ist dieser Punkt nun zu sehen. Nun auch im Aufriss und im Seitenriss. Im Grundriss ist zu sehen, wie weit der Punkt vorne, im Aufriss wie hoch und wie weit er seitlich ist. Damit ist der Punkt im Raum definiert. Der Seitenriss ist eine zusätzliche Kontrolle.

49 49 Grundlagen – raumliche Vorstellung Koordinatensystem Nun wird ein zweiter Punkt, jener in der Mitte der Grund- fläche des Würfels ebenso in den drei Abbildungsebenen und im Raum dargestellt.

50 50 Grundlagen – raumliche Vorstellung Koordinatensystem Nun wird ein zweiter Punkt, jener in der Mitte der Grund- fläche des Würfels ebenso in den drei Abbildungsebenen und im Raum dargestellt. Der Würfel wird nun in die Abbildungsebenen gerückt und es können die räumli- chen Zusammenhänge studiert werden. Dafür ist ausreichend Zeit nötig.

51 51 Grundlagen – raumliche Vorstellung Kurz zusammengefasst: Das Koordinatensystem ist im aufgeklappter Form zwei- dimensional und stellt in wenigsten zwei Ansichten (von oben und von vorne oder von vorne und von der Seite) dreidimensionale Körper dar. Koordinatensystem Jeder Punkt des Körpers hat einen X-,Y- und Z-Wert im Koordinatensystem.

52 52 Grundlagen – raumliche Vorstellung Der gekennzeichnete Punkt am Würfel hat also eine Höhe (Z-Wert), einen Wert, wie weit er vorne ist (X-Wert) und wie weit er seitlich ist (Y-Wert). Die Werte werden vom Ursprung (Zusammentreffen der drei Achsen X, Y, Z) aus gerechnet. Koordinatensystem Somit ist der Eckpunkt A (X,Y,Z) im Raum definiert.

53 53 Grundlagen – raumliche Vorstellung In folgenden PowerPoint- Präsentationen wird die Konstruktion im Koordinaten- system gezeigt: DG1-Dreieck im Raum DG1- Prisma im Raum Koordinatensystem

54 54 Danke für´s Mitdenken! Euer Grundlagen – raumliche Vorstellung

55 55 DG1 – Dreieck im Raum Aufgabenstellung: Ein Dreieck soll im Aufriss und im Grundriss dargestellt werden. Gleichzeitig wir in einem Schrägriss der Zeichenvorgang im Raum dargestellt. Angabe: A(X,Y,Z), B(X,Y,Z), C(X,Y,Z)

56 56 DG1 – Dreieck im Raum Punkt A wird gezeichnet. X Y Z

57 57 DG1 – Dreieck im Raum Punkt B wird hinzu gezeichnet.

58 58 DG1 – Dreieck im Raum Punkt C wird hinzu gezeichnet.

59 59 DG1 – Dreieck im Raum Nun können die Eckpunkte zu einem Dreieck verbunden werden.

60 60 DG1 – Dreieck im Raum Nun wird der Punkt A im Schrägriss im Raum eingezeichnet.

61 61 DG1 – Dreieck im Raum Es folgt der Punkt B und …..

62 62 DG1 – Dreieck im Raum …der Punkt C

63 63 DG1 – Dreieck im Raum Es können nun die Eckpunkte im Raum verbunden werden.

64 64 DG1 – Dreieck im Raum Das Dreieck wird nun weiß, etwas durchsichtig eingefärbt, um die räumliche Sichtbarkeit zu erhöhen.

65 65 DG1 – Dreieck im Raum Im Schrägriss kann nun auch die Abbildung des Dreiecks in 3 erfolgen. Dazu werden die Eckpunkte über Ordner übertragen.

66 66 DG1 – Dreieck im Raum Noch eine Darstellung mit dem eingefärbten Dreieck und….

67 67 DG1 – Dreieck im Raum ….nochmals ohne Ordnerlinien. Nehmen Sie sich Zeit, um das Dreieck wirklich im Raum zu sehen. Wechseln Sie zwischen dem vorigen Bild und diesem hin und her.

68 68 Danke für´s Mitdenken! DG1 – Dreieck im Raum Euer

69 69 DG1 – Prisma im Raum Das gleichseitige Dreieck ABC, A(2/3/2, M(5/y*/4,5) hat dritte Hauptlage und ist Basis eines geraden Prismas mit der Höhe 3cm. Zeichne die 3 Hauptrisse des Prismas. * Die Angabe y bedeutet, dass der Y-Wert durch eine andere Angabe bereits definiert ist. Im gegebenen Fall ist dies die Angabe, dass die Grundfläche 3. Hauptlage hat, also alle Punkte dieser Grundfläche den gleichen Y-Wert haben, ( Punkt A ist definiert, Y-Wert = 3). Aufgabenstellung:

70 70 DG1 – Prisma im Raum Dreieck ABC, A(2/3/2, M(5/y/4,5) Die Punkte A und M werden in den drei Rissen gezeichnet.

71 71 DG1 – Prisma im Raum Dreieck ABC, A(2/3/2, M(5/y/4,5) Die Punkte A und M werden in den drei Rissen gezeichnet. Im Seitenriss kann nun das Dreieck der Basis gezeichnet werden.

72 72 DG1 – Prisma im Raum Dreieck ABC, A(2/3/2, M(5/y/4,5) Die Punkte A und M werden in den drei Rissen gezeichnet. Im Seitenriss kann nun das Dreieck der Basis gezeichnet werden. Nun werden die Punkte in den Auf- und Grundriss übertragen.

73 73 DG1 – Prisma im Raum Dreieck ABC, A(2/3/2, M(5/y/4,5) Die Punkte A und M werden in den drei Rissen gezeichnet. Im Seitenriss kann nun das Dreieck der Basis gezeichnet werden. Nun werden die Punkte in den Auf- und Grundriss übertragen. Die Höhe (3 cm) des Prismas ist im Auf- und Grundriss in wahrer Größe zu sehen und kann daher aufgetragen werden.

74 74 DG1 – Prisma im Raum Nun können die Seitenkanten des Prismas gezeichnet werden.

75 75 DG1 – Prisma im Raum Nun können die Seitenkanten des Prismas gezeichnet werden. Die Sichtbarkeit ist in diesem Beispiel leicht zu lösen, da alle Kanten des Prismas sichtbar sind. Die Konstruktion in den drei Abbildungsebenen (Rissen) ist nun vollständig.

76 76 DG1 – Prisma im Raum Zum Abschluss soll in einem Schrägriss die Konstruktion im Raum nachvollzogen werden. Die drei Risse sind in einer Ebene.

77 77 DG1 – Prisma im Raum Zum Abschluss soll in einem Schrägriss die Konstruktion im Raum nachvollzogen werden. Die drei Risse sind in einer Ebene. Die Risse werden zu einem räumlichem Koordinatensystem zusammengeklappt. Es ist gut, wenn mehrmals mit der letzten Folie gewechselt wird. Dadurch wird der Klappvorgang deutlicher.

78 78 DG1 – Prisma im Raum Um Platz zu sparen wurde das Fenster verkleinert. Die Darstellungen wurden auch aufgehellt um die Schrägriss- darstellung besser sehen zu können.

79 79 DG1 – Prisma im Raum Um Platz zu sparen wurde das Fenster verkleinert. Die Darstellungen wurden auch aufgehellt um die Schrägriss- darstellung besser sehen zu können. Als erster Schritt werden die vor- dersten zwei Punkte in den Raum übertragen. Im Aufriss und im Seitenriss ist die Höhe dieser beiden Punkte zu sehen.

80 80 DG1 – Prisma im Raum Als zweiter Schritt werden die beiden hintersten zwei Punkte in den Raum übertragen. Im Aufriss und im Seitenriss ist die Höhe dieser beiden Punkte zu sehen.

81 81 DG1 – Prisma im Raum Als zweiter Schritt werden die beiden hintersten zwei Punkte in den Raum übertragen. Im Aufriss und im Seitenriss ist die Höhe dieser beiden Punkte zu sehen. Nun werden die beiden höchsten Punkte in den Raum gestellt.

82 82 DG1 – Prisma im Raum Als zweiter Schritt werden die beiden hintersten zwei Punkte in den Raum übertragen. Im Aufriss und im Seitenriss ist die Höhe dieser beiden Punkte zu sehen. Nun werden die beiden höchsten Punkte in den Raum gestellt. Die Grundfläche des Prisma ist im Raum gezeichnet.

83 83 DG1 – Prisma im Raum Als zweiter Schritt werden die beiden hintersten zwei Punkte in den Raum übertragen. Im Aufriss und im Seitenriss ist die Höhe dieser beiden Punkte zu sehen. Nun werden die beiden höchsten Punkte in den Raum gestellt. Die Grundfläche des Prisma ist im Raum gezeichnet. Und nun auch die Deckfläche.

84 84 DG1 – Prisma im Raum Als zweiter Schritt werden die beiden hintersten zwei Punkte in den Raum übertragen. Im Aufriss und im Seitenriss ist die Höhe dieser beiden Punkte zu sehen. Nun werden die beiden höchsten Punkte in den Raum gestellt. Die Grundfläche des Prisma ist im Raum gezeichnet. Und nun auch die Deckfläche. Als letztes die Seitenkanten.

85 85 DG1 – Prisma im Raum Nun ist die Sichtbarkeit auch ein- gezeichnet.

86 86 DG1 – Prisma im Raum Nun ist die Sichtbarkeit auch ein- gezeichnet. Hier nochmals die Zuordnung zu den Abbildungsebenen (Rissen) hier nun mit dem Aufriss.

87 87 DG1 – Prisma im Raum Nun ist die Sichtbarkeit auch ein- gezeichnet. Hier nochmals die Zuordnung zu den Abbildungsebenen (Rissen) hier nun mit dem Aufriss. Jetzt mit dem Seitenriss.

88 88 DG1 – Prisma im Raum Ohne Zuordnungslinien schwebt das Prisma im Raum. Durch mehrmaliges Umschalten mit der vorigen Folie wird die Zuordnung deutlich erkenntlich. Die räumliche Darstellung und die Zuordnung zu den Abbildungs- ebenen ist nun abgeschlossen.

89 89 Danke für´s Mitdenken! Euer DG1 – Prisma im Raum


Herunterladen ppt "1 Grundlagen – raumliche Vorstellung Der Würfel und seine Folgen … Folgende Teile der Präsentation: Ansichten Schrägriss Abbildungsebenen Gedanken zum."

Ähnliche Präsentationen


Google-Anzeigen