Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

" Auf sehr unterschiedliche Art und Weise kann der Antworttypus, d.h. die Art der verlangten sprachlichen Reaktion gestaltet sein. Hier kommen fast alle.

Ähnliche Präsentationen


Präsentation zum Thema: "" Auf sehr unterschiedliche Art und Weise kann der Antworttypus, d.h. die Art der verlangten sprachlichen Reaktion gestaltet sein. Hier kommen fast alle."—  Präsentation transkript:

1 " Auf sehr unterschiedliche Art und Weise kann der Antworttypus, d.h. die Art der verlangten sprachlichen Reaktion gestaltet sein. Hier kommen fast alle aus der Psychophysik, der Wissenschaft von den Beziehungen zwischen objektiv gegebenen Stimuli und subjektiv erfolgenden Reaktionen her bekannten Formen des Urteilens in Frage. In einfachster und weitaus am häufigsten angewendeter Weise wird auf eine Frage oder Feststellung lediglich ein zweistufiges kategoriales Urteil verlangt: 'Ja' ('Stimmt', 'Stimme zu' etc.) 'Nein' ('Stimmt nicht', 'Lehne ab' etc.) Rating-Skalen

2 Rating-Skalen (2) Die Zahl der Antwortkategorien kann erweitert werden, z.B. im Minimalfalle um eine dritte Antwortkategorie: 'Ja' -- 'Neutral' -- 'Nein '+' -- '0' -- '-'

3 Rating-Skalen (3) Es kommen ferner alle denkbaren Arten von Mehrfachwahlantworten in Frage, so dass die Beantwortung der Fragebogen-Items in Form eines Rating, also auf einer Schätzskala erfolgt; dabei kann es sich um eine rein numerische Rating-Skala, eine graphische Rating-Skala, eine verbal verankerte (d.h., an bestimmten Punkten der Skala mit Worten beschriftete) oder aber nicht verankerte Rating-Skala oder um irgendwelche Kombinationen solcher Antwortformen handeln, z.B. aus: H.D. Mummendey: Die Fragebogen-Methode. Göttingen 1987: 55, Herv. im Original)

4 Rating-Skalen (4) Wichtig ist, dass die Antwortdimension zur Frage passt: Häufigkeit: nie – selten – manchmal – oft – immer Intensität: nicht – wenig – mittelmäßig – ziemlich – sehr Diese Antworten können als gleichabständig gelten (Rohrmann, 1978) und als daher intervallskaliert behandelt werden. Bei subjektiven Einschätzungen sind 5 bis 7-stufige Ratingskalen empfehlenswert Wichtig: Sollen mehrere Items zu einer Gesamtskala zusammengefasst werden, müssen alle dasselbe Antwortformat haben.

5 Umwelt-Items

6 Datenaufbereitung Variablenbenennung (z.B. gro für Geschlechtsrollenorientierung) Codierung und Wertebenennung (z.B. 1=SPD, 2=CDU) Umgang mit fehlenden Werten: Weglassen oder Zahl eintippen (999) und als fehlend definieren; diese Werte dürfen nicht als echte Werte vorkommen können Eintrag in die Datenmatrix

7 Datenmatrix Als Beispiel verwenden wir die Einkommensangaben Nettoeinkommen der Befragten (Rohdaten bzw. Urliste) aus der Datenmatrix von Diekmann (1995). Fall-Nr./V1Schulbildung/V2Beruf/V3Einkommen/V4 012Werkzeugmacher Verkäufer Studienrätin Kraftfahrer Friseur Programmiererin Allgemeinmediziner Journalistin Sachbearbeiter Installateur Krankenpfleger Steuerberaterin Bankkaufmann Verkäuferin Krankengymnastin2900

8 Weiteres Vorgehen Items zu Gesamtskalen zusammenfassen: gegensinnige Items umpolen, z.B. (1=5) (2=4) (3=3) (4=2) (5=1) Gesamtskala als Summe oder Mittelwert berechnen, Mittelwert hat 2 Vorteile: Einheit wird beibehalten, fehlende Werte werden berücksichtigt Itemanalyse, d.h. Überprüfung der inneren Konsistenz (Reliabilität)

9 Itemanalyse R E L I A B I L I T Y A N A L Y S I S - S C A L E (STA) Mean Std Dev Cases 1. STA1,3699, ,0 2. STA2,3179, ,0 3. STA3,9653, ,0 4. STA4,6012, ,0

10 Itemanalyse **** Method 1 (space saver) will be used for this analysis ****** R E L I A B I L I T Y A N A L Y S I S - S C A L E (S T A) Item-total Statistics Scale Scale Corrected Mean Variance Item- Alpha if Item if Item Total if Item Deleted Deleted Correlation Deleted STA1 1,8844,7191,1472,4718 STA2 1,9364,5831,3831,1900 STA3 1,2890 1,0090,0862,4687 STA4 1,6532,5651,3633,2093 Reliability Coefficients N of Cases = 173,0 N of Items = 4 Alpha =,4307

11 Ausgangsdaten In welcher Form liegen die erhobenen Informationen vor? -Rohdaten (Urliste) -Sortierte Daten (Primärliste) -gruppierte Daten -klassifizierte Daten Univariate Häufigkeitsverteilung

12 Berufliche Stellung des Vaters (Rohdaten bzw. Urliste) Als Beispiel dient die Angabe über die berufliche Stellung des Vaters in der Befragung von Benninghaus (1987). Da es sich um viele Fälle (n=60), aber nur eine Variable handelt, werden die Rohdaten der Einfachheit halber nicht in Form einer Matrix, sondern in Form einer Liste der einzelnen Variablenausprägungen angegeben. Urliste 2, 1, 2, 1, 4, 1, 1, 3, 1, 5, 4, 2, 5, 1, 2, 1, 3, 1, 3, 1, 3, 5, 4, 5, 4, 2, 1, 2, 3, 1, 1, 2, 2, 2, 2, 1, 3, 4, 2, 1, 2, 2, 1, 1, 1, 3, 1, 3, 3, 2, 1, 1, 1, 2, 1, 2, 3, 3, 3, 3 In sortierter Form (Primärliste): Univariate Häufigkeitsverteilung

13 Univariate Häufigkeitsverteilung, gruppierte Daten

14 Univariate Häufigkeitsverteilung; klassifizierte Daten Wenn (kontinuierliche) Variablen viele Ausprägungen haben, sind Häufigkeits- verteilungen unübersichtlich. Die Variablenausprägungen werden dann in Gruppen aufgeteilt (z.B. Alter Jahre, Jahre, Jahre usw.) Dazu wird eine neue Variable gebildet, die dann in einer Häufigkeitsverteilung dargestellt werden kann. Die Klassen dürfen sich nicht überschneiden: Alter 10 - unter 20, 20 – unter 30 usw.

15 Klassifizierung von Variablen möglichst Klassen gleicher Breite nicht mehr als 20 Klassen die Klassen sollten so breit sein, dass keine leeren Klassen (Lücken) auftreten Wichtige Begriffe: Klassenbreite, Klassenmitte, exakte Grenzen

16 Univariate Verteilung einer kontinuierlichen Variablen (2) Ergebnisse einer Auszählung per Hand Da es sich um eine kontinuierliche Variable (mit vielen unterschiedlichen Ausprägungen) handelt, führt eine Häufigkeitsverteilung der einzelnen Ausprägungen zu keiner Übersicht. Man sollte die Variable vorher klassifizieren. Dann ergibt sich folgende Verteilung. Personen ohne Einkommensangaben (missing values) werden getrennt aufgeführt. Einkommensklasse von... bis unter... DM l Klassenmitte x l absolute und relative Häufigkeiten flfl plpl , , , ,083 > 8000(9000)10, ,999 Für drei befragte Personen liegen keine Einkommensangaben vor.

17 Bestandteile von Tabellen Überschrift: Sachliche, räumliche und zeitliche Bezeichnung des Tabelleninhalts Überschrift für Vorspalte Tabellenkopf: Überschriften der einzelnen Tabellenspalten mit Angabe der jeweiligen Maßeinheit Vorspalte: Bezeichnungen der einzelnen Tabellenzeilen Anmerkungen: Anmerkungen zu einzelnen Einträgen in der Tabelle. Quelle: Quellenangabe, wenn Tabelle insgesamt oder die in der Tabelle dargestellten Zahlen von anderer Stelle übernommen wurden. Datenbasis: Bezeichnung der Datenquelle, mit Hilfe derer die Zahlen in der Tabelle generiert wurden.

18 Abkürzungen X Y Z Variablen x i Werte einer Variablen f i Häufigkeit p i relative Häufigkeiten (Prozente) fc i kumulierte Häufigkeit N Anzahl der Untersuchungseinheiten

19 Häufigkeitsverteilung der Variablen Schulbildung Ausprägungxkxk absolute und relative Häufigkeiten kumulierte absolute und relative Häufigkeiten fkfk pkpk 100p k cf k cp k 100cp k kein Abschluß110, Volks-, Hauptschule 270,474780,5353 Realschule, Mittlere Reife 340, ,8080 Abitur, Hoch- schulreife 430, ,0100 Insgesamt151,01101 Quelle: Diekmann (1995: 556)

20 Einkommensverteilung (klassifizierte Daten) Einkommens- klasse von... bis unter... l Klassen- mitte x l absolute und relative Häufigkeiten kumulierte absolute und relative Häufigkeiten flfl plpl cf l cp l DM1000 DM10, DM DM 3000 DM60,50070, DM DM 5000 DM30,250100, DM DM 7000 DM10,083110, DM und mehr (9000 DM)10,083120, ,999 Quelle: Diekmann (1995: 559)

21 Graphische Darstellung diskreter Variablen; Säulendiagramm

22

23 Kreisdiagramm

24 Bestandteile von Graphiken -Überschrift: Sachliche, räumliche und zeitliche Bezeichnung des dargestellten Sachverhalts. - Achsenbeschriftung: Bezeichnung des auf der Achse abgetragenen Merkmals (inkl. Maßeinheit). - Achsenskalierung: Beschriftung der auf der Achse abgetragenen Werte. - Legende: Bezeichnung der Datenreihen, falls mehrere in einer Graphik dargestellt werden. - Anmerkungen: Anmerkungen zu Einzelheiten in der Graphik. -Quelle: Quellenangabe, wenn Graphik insgesamt oder die in der Graphik dargestellten Zahlen von anderer Stelle übernommen wurden. - Datenbasis: Bezeichnung der Datenquelle, mit Hilfe derer die Zahlen in der Graphik generiert wurden.

25 Univariate Verteilung einer kontinuierlichen Variablen Statistische Graphik: Histogramm Ein Histogramm sieht aus wie ein Säulendiagramm. Da es sich um eine kontinuierliche Variable handelt, ist jedoch der gesamte Wertebereich der x-Achse relevant (und nicht nur einzelne, diskrete Ausprägungen). Dementsprechend gibt es keine Zwischenräume zwischen den "Säulen", sie stoßen direkt aneinander an. Darüber hinaus ist auch noch zu berücksichtigen, dass ein Histogramm eine flächenproportionale Darstellung ist (und keine höhenproportionale wie beim Säulendiagramm).

26 Univariate Verteilung einer kontinuierlichen Variablen

27

28

29

30

31

32 Klassifizierte Variable Lebensalter (Version I) Aters- klasse in Jahren exakte Grenzen von... bis unter... Klassenmitte in Jahren Häufigkeitkumulierte Häufigkeit ,5-25, ,5-30, ,5-35, ,5-40, ,5-45, ,5-50, ,5-55, ,5-60, ,5-65,563260

33 Klassifizierte Variable Lebensalter (Version I)

34 Klassifizierte Variable Lebensalter (Version 2) Alters- klasse in Jahren exakte Grenzen von... bis unter... Klassenmitte in Jahren Häufigkeitkumulierte Häufigkeit ,5-22, ,5-27, ,5-32, ,5-37, ,5-42, ,5-47, ,5-52, ,5-57, ,5-62, ,5-67,565160

35 Klassifizierte Variable Lebensalter (Version 2)

36 Histogramm mit Polygonzug

37

38 Klassifizierte Variable mit unterschiedlichen Klassenbreiten (1) Monatliche Haushalts-Nettoeinkommen in DM (Mai 1992, früheres Bundesgebiet) Quelle: Datenreport (1994: 104). Monatliche Haushalts-Nettoeinkommen in DM (Mai 1992, früheres Bundesgebiet) Einkommensklasse von... bis unter... DM Klassenmitte in DM Prozentualer Anteil Klassenbreite in DM Proz. Anteil pro 100 DM Klasse unter ,006,410000, ,0015,68001, ,0019,17002, ,0011,05002, ,0018,310001, ,0012,610001, ,007,210000, ,005,315000, und mehr9500,004,64000 angenommen 0,12

39 Klassifizierte Variable mit unterschiedlichen Klassenbreiten (2)

40 Klassifizierte Variable mit unterschiedlichen Klassenbreiten (3) Die vorherige Abbildung suggeriert, dass in der vierten Einkommensklasse ( DM, Klassenmitte 2750 DM) -- verglichen mit den angrenzenden Einkommensklassen -- eher wenige Haushalte vertreten sind. Das hat jedoch damit zu tun, dass diese Einkommensklasse nur ein Einkommensintervall von 500 DM umfasst. Beträgt das Einkommensintervall 1000 DM, wie in der fünften Einkommensklasse, dann werden dadurch natürlich sehr viel mehr Haushalte erfasst. Das folgende Histogramm kontrolliert dagegen die Breite der Einkommensklassen. Jetzt zeigt sich nicht mehr der "Einbruch" in der vierten Einkommensklasse.

41 Ein solches (flächenproportionales) Histogramm erzeugt man, indem man die unterschiedlich breiten Klassen in kleinere Klassen gleicher Breite unterteilt. In dem obigen Beispiel wurden Klassen der Breite 100 DM gewählt. Die (absoluten oder relativen) Häufigkeiten der ursprünglichen Klassen sind entsprechend auf die kleineren Klassen aufzuteilen. Dies geschieht in dem Beispiel durch Division mit der Anzahl der 100 DM Klassen, die das ursprüngliche Intervall umfasst. Klassifizierte Variable mit unterschiedlichen Klassenbreiten (4)

42 Klassifizierte Variable mit unterschiedlichen Klassenbreiten (5)

43 Klassifizierte Variable mit unterschiedlichen Klassenbreiten (6) An dieser Stelle wird auch deutlich, warum es sich um eine flächenproportionale Darstellung handelt. Die Höhe der "Säulen" entspricht jetzt nicht mehr dem dargestellten Sachverhalt: dem prozentualen Anteil der entsprechenden Einkommensklasse. Betrachten wir dazu die zweite Einkommensklasse und die zweite "Säule". Der prozentuale Anteil der zweiten Einkommensklasse beträgt 15,6%, die Höhe der zweiten Säule entspricht jedoch nur einem Anteil von knapp unter 2% (exakt 1,95%). Auf den darzustellenden Sachverhalt (Anteilswert von 15,6%) kommt man nur, wenn man bedenkt, dass die zweite "Säule" aus insgesamt 8 "Teilsäulen" á 100 DM zusammengesetzt ist. Das Produkt 8*1,95 ergibt die gesuchte Größe 15,6. Anders ausgedrückt: Das Produkt aus Breite (8) und Höhe (1,95) der "Säule", also ihre Fläche, entspricht dem darzustellenden Sachverhalt.

44 Bivariate Verteilung; Gestapeltes Säulendiagramm

45 Bivariate Verteilung zweier kontinuierlicher Variablen

46 Graphische Darstellungen Univariate Verteilungen Kreisdiagramm Balkendiagramm Säulendiagramm Stabdiagramm Histogramm Polygonzug Stamm-und-Blatt- Diagramm Box-Plot Bivariate Verteilungen 2. Variable kategorial Vergleich mehrerer Balken- oder Säulendiagramme Vergleich mehrerer Box-Plots kontinuierlich- Streudiagramm 1. Variable kategorial kontinuierlich

47 Manipulieren mit Graphiken Beispiel: Bei einem Säulendiagramm wird auf der y-Achse nur ein Teil der Skalierung aufgeführt, so dass Unterschiede zwischen den Säulen überbetont werden.


Herunterladen ppt "" Auf sehr unterschiedliche Art und Weise kann der Antworttypus, d.h. die Art der verlangten sprachlichen Reaktion gestaltet sein. Hier kommen fast alle."

Ähnliche Präsentationen


Google-Anzeigen