Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

13. Vorlesung SS 2005Computational Chemistry Es gibt zwei grundsätzliche Sichtweisen des Proteinfaltungsproblems: 1 Was sind die treibenden Kräfte (driving.

Ähnliche Präsentationen


Präsentation zum Thema: "13. Vorlesung SS 2005Computational Chemistry Es gibt zwei grundsätzliche Sichtweisen des Proteinfaltungsproblems: 1 Was sind die treibenden Kräfte (driving."—  Präsentation transkript:

1 13. Vorlesung SS 2005Computational Chemistry Es gibt zwei grundsätzliche Sichtweisen des Proteinfaltungsproblems: 1 Was sind die treibenden Kräfte (driving forces), aufgrund derer sich ein Protein faltet? Physikalische/bioinformatische Sicht des Problems. 2Zu welcher dreidimensionalen Struktur faltet sich (m)ein bestimmtes Protein? Biologische Sicht des Problems. V13 Proteinfaltung

2 13. Vorlesung SS 2005Computational Chemistry Modellproblem: Kollision von H mit H 2 Dobson, Karplus, Angew. Chemie Int. Ed. 37, 868 (1998) Reaktion kann durch eine Reaktionskoordinate komplett beschrieben werden.

3 13. Vorlesung SS 2005Computational Chemistry experimentell beobachtbare Variablen Dobson, Karplus, Angew. Chemie Int. Ed. 37, 868 (1998) Die komplette Beschreibung der Protein- faltungsreaktion erfordert eine Vielzahl an Reaktionskoordinaten: - Wie ändert sich die Größe (der radius of gyration) mit der Zeit? (Exp. Kleinwinkelstreuung) - Wann bilden sich Elemente der Sekundärstruktur? (Exp. FTIR, CD) - Wann bildet sich der hydrophobe Kern? (Exp. Fluoreszenz) - Wann werden die Wassermoleküle aus dem Proteininneren verdrängt? (Fluoreszenz-Quenching) - Wann sind welche tertiären Kontakte gebildet? (siehe -value analysis, NMR) - Was ist die Rolle von Dynamik (H/D-Austausch-Experimente) - Gibt es Intermediate?

4 13. Vorlesung SS 2005Computational Chemistry Experimente zeigen die Faltung stets entlang einiger weniger Reaktionskoordinaten. Es ist schwierig, dadurch den Mechanismus der Proteinfaltung zu verstehen. Das Fazit dieser Stunde wird lauten: Reichen Simulationen allein aus um Proteinfaltung zu verstehen? Nein! Kombination von Simulation mit Experiment. Ja! Proteinfaltung: Kombination von Simulation mit Experiment notwendig

5 13. Vorlesung SS 2005Computational Chemistry 1Typen von Wechselwirkungen hydrophob elektrostatisch 2Wechselwirkungspartner Protein-Protein Protein-Solvens Solvens-Solvens 3Freie Enthalpie ( G) des Gesamtsystems reduzieren, nicht z.B. nur die innere Energie des Proteins alleine dynamische Simulationen notwendig driving forces für Proteinfaltung

6 13. Vorlesung SS 2005Computational Chemistry Nicht betrachtete Spezialfälle 1Proteine mit Di-Sulphidbrücken (z.B. BPTI) Faltungskinetik wird komplett durch Bildung von Disulfidbrücken dominiert. 2Proteine mit cis-Prolinen in entfalteten Peptide sind Proline zu 10 – 20 % in cis-Konformation;gefaltete Proteine haben fast nur trans-Proline; cis/trans-Isomerisierung dauert jedoch Minuten; es gibt jedoch spezielle cis/trans-Isomerasen wie Cyclophilin 3Mehr-Domänenproteine... Was bleibt dann noch übrig? kleine Standard Ein-Domänen-Proteine

7 13. Vorlesung SS 2005Computational Chemistry *Problem der Proteinfaltung beinhaltet zwei Aspekte: (a) Sequenz Struktur ist weitgehend ungelöst (b) Verständnis der treibenden Kräfte/Dynamik/ Mechanismen. Diese sind mittlerweile vergleichsweise gut bekannt. *warum ist (a) so schwierig? Beispiel: Lysozym bei 25 C H U F = – 2245 kJ/mol davon sind – 1881 kJ/mol von den nichtpolaren Gruppen und – 364 kJ/mol von den polaren Gruppen - T S U F = kJ/mol U F = – 59 kJ/mol d.h. nur ca. 0.4 kJ/mol pro Residue ! Die Differenz zweier sehr großer Terme ist selbst sehr klein. Warum ist die Energetik der Proteinfaltung ein schwieriges Problem?

8 13. Vorlesung SS 2005Computational Chemistry C. Levinthal, J. Chim. Phys. 65, (1968): Falls man eine Kette von 100 Aminosäuren betrachtet und annimmt, dass jede Aminosäure in einer von 3 Konformationen existieren kann – ausgestreckt, Helix oder Schleife - dann gibt es mögliche Weise, die Kette anzuordnen. Das sind etwa Konformationen. Die Rotation um Bindungen geschieht höchstens mal pro Sekunde. Daher dauert eine Zufallssuche nach der richtigen Konformation etwa s = Jahre, viel länger als das Alter des Universums! Die kritische Annahme dabei ist, dass alle möglichen Konformationen mit der gleichen Wahrscheinlichkeit gesampelt werden. Der Faltungstrichter sieht also wie ein Loch auf einem flachen Golfplatz aus. Daher wurde vermutet, dass bestimmte Faltungspfade existieren, die zur gefalteten Struktur führen. Levinthal-Paradox 1968

9 13. Vorlesung SS 2005Computational Chemistry Golfkurs-Beispiel 1-D Energielandschaft. Im Fall extremer Frustration gibt es keine Korrelation zwischen struktureller Ähnlichkeit mit dem Grundzustand und der Energie. Einzige Möglichkeit:Zufallssuche.

10 13. Vorlesung SS 2005Computational Chemistry Lösung für Levinthal-Paradoxon: Folding Funnel Energielandschaft eines minimal frustrierten Heteropolymers. Die Trichterform ermöglicht, dass der gefaltete Zustand in kurzer Zeit erreicht wird.

11 13. Vorlesung SS 2005Computational Chemistry Nucleation-condensation-Modell Wetlaufer, D.B. (1973) PNAS 70, 697 Es werden einige kritische kinetische Nuklei geformt, um die herum der Rest der Struktur wächst. Framework Modell Ptitsyn, O.B. & Rashin, A.A. (1975) Biophys. Chem. 3, 1 Zunächst falten sich die Sekundärstrukturelemente. Diese docken dann im ratenlimitierenden Schritt zur 3D-Struktur. Modell des hydrophoben Kollapses Dill, K.A. (1985) Biochemistry 24, 1501 Treibende Kraft ist der hydrophobe Effekt. Wasser wird unspezifisch verdrängt. Die abschliessende Umordnung des kollabierten Zustands ist ratenlimitierend. Modelle um Proteinfaltung zu beschreiben

12 13. Vorlesung SS 2005Computational Chemistry Die ersten Schritte der Proteinfaltung sind entropisch ungünstig, durch den Verlust an Entropie aufgrund der reduzierten Beweglichkeit der Seitenketten. Der enthalpische Gewinn durch entstehende native Wechselwirkungen kann dies nicht ganz kompensieren. Erst im Übergangszustand (transition state) werden die beiden Beiträge gleichgroß. Danach geht die Faltung downhill. Nucleation-condensation Modell

13 13. Vorlesung SS 2005Computational Chemistry gewann an Bedeutung als man kleine Sekundärstrukturelemente-Fragmente von Proteinen identifizieren konnte, die bereits in Lösung gefaltet sind. (Munoz, Serrano ). Framework-Modell

14 13. Vorlesung SS 2005Computational Chemistry native Kontakte *native Kontakte sind essentiell Hypothese, daß es kleine Peptidstücke gibt, unabhängig faltende Einheiten, sogennante Foldons Beispiele: -hairpins (Munoz&Eaton), die sich in ca. 6 s falten kleine Fragmente aus BPTI (SYPFDV) *Langevin-Simulationen zeigen: -Helices falten sich in ca ns -hairpins brauchen ca. 10 s Auch native Kontakte passen zum Framework-Modell a: Ar(i)-HN(i) Wechselwirkung zwischen Phe517 und der Amidgruppe des Rückgrats von Tyr518 in Phosphoinoitide-Specific Phospholipase C (1DJX). b: Ar(i)-HN(i) Wechselwirkung in Ascorbate Oxidase (1AOZ). Tóth et al. Proteins 43, 373 (2001)

15 13. Vorlesung SS 2005Computational Chemistry Modell des hydrophoben Kollapses sagt ein Faltungs-Intermediat voraus, den sogenannten Molten Globule, den man kinetisch und im Gleichgewicht als eine expandierte Form des gefalteten, nativen Zustands charakterisiert hat. Molten Globule

16 13. Vorlesung SS 2005Computational Chemistry Hydrogen-Exchange: H/D-Austausch der Backbone HN-Atome gegen D/H- Atome der Lösung. Gibt Information über Faltungs-Intermediate: ist diese Gruppe solvenszugänglich? Konsolidierung des Protein-Rückgrats. Protein Engineering (Mutagenese): sensitiv für Seitenketten- Wechselwirkungen. Entdeckung von kleinen Proteinen mit lediglich zwei Zuständen (gefaltet entfaltet) CI-2 spectrin SH3 cold shock protein CspB Bisher wurden etwa 30 Proteine mit dieser Methode untersucht. Neue Methoden

17 13. Vorlesung SS 2005Computational Chemistry (a) zwei extreme Szenarien: Framework bedeutet, dass sich die 2nd-Strukturelemente zuerst falten. Nucleation condensation ist ein Kompromiss zwischen den beiden Extremfällen. (b) Proteine, die man einer oder der anderen Kategorie zuordnen kann. Bisher wurde kein Protein gefunden, das einen reinen Hydrophoben Kollaps zeigt, also während des Kollapses keine 2nd-Struktur formt. Mechanismus der Proteinfaltung (Fersht) Daggett, Fersht, TIBS 28, 18 (2003)

18 13. Vorlesung SS 2005Computational Chemistry Nucleation-condensation wird heute als Standardmechanismus für die Faltung kleiner Proteine angesehen (Serrano und Mitarbeiter, PNAS 99, (2002)). Manche Proteine falten jedoch auf eine polarisierte Weise, wobei sich ein Teil der Struktur sehr früh bildet und andere Abschnitte bis zuletzt unstrukturiert bleiben. CI-22-Zustandglobal diffus:alle Residuen falten sich gleichzeitig SH32-Zustandim Übergangszustand ist eine Region des Proteins fast vollständig gefaltet, eine andere jedoch nur kaum. Barnasezwei Faltungsmodule falten sich unabhängig voneinander zu Intermediat gemäss NC-Mechanismus Dann docken diese beiden Module gemäss Framework-Modell. Faltung kleiner Proteine

19 13. Vorlesung SS 2005Computational Chemistry Bryngelson, Wolynes, PNAS (1987) gradient roughnessmacht Faltung schnellerlangsamer Frustration New view of Protein folding: Faltung auf rauhen, trichterförmigen Energielandschften Brooks, Gruebele, Onuchic, Wolynes, PNAS 95, (1998)

20 13. Vorlesung SS 2005Computational Chemistry Energielandschaft mit unterschiedlicher Frustration Links: hoch frustrierte Landschaft mit T g > T f. Rechts: geringe Frustration; T g < T f ; Ähnlichkeit mit Trichterform

21 13. Vorlesung SS 2005Computational Chemistry Theorie der Energielandschaften für Proteinfaltung nach Onuchic, Nymeyer, Garcia, Chahine, Socci, Adv. Prot. Chem. 53, 87 (2000) Holy grail: Proteinsequenz Proteinstruktur Entwicklung von theoretischen Konzepten, mit denen man sich faltende von sich nicht faltenden Sequenzen unterscheiden kann. P.S. Kim & R.L. Baldwin (Annu Rev BioChem 59, 631 [1990]): Faltung geschieht entlang von Pfaden mit wohldefinierten Intermediaten. Diese Sichtweise wurde seit Beginn der ´90er Jahre durch das Bild der Faltung eines Proteins in einem Faltungstrichter der Energie ersetzt. - Faltung ist ein kollektiver (d.h. die Faltung der Aminosäurenkette beginnt an vielen Positionen gleichzeitig) und selbst-organisierter Prozeß - Faltung geschieht entlang einer Vielzahl von Routen bis auf den Boden des Faltungstrichters.

22 13. Vorlesung SS 2005Computational Chemistry D. Baker, Nature 405, 39 (2000) Für viele Proteine ist die Faltungsgeschwindigkeit durch das Verhältnis von lokalen zu nicht-lokalen Kontakten bestimmt. Rolle der Topologie a bis d. rot: grosser Einfluss auf Faltungsrate, blau: kleiner Einfluss. e: Kontakt-Ordnung: mittlerer Sequenz-Abstand räumlich benachbarter Amino- säuren; normiert über die Gesamtlänge des Proteins. f: überraschend deutlicher Zusammenhang zwischen der Faltungsgeschwindigkeit von Proteinen und ihrer Kontakt-Ordnung.

23 13. Vorlesung SS 2005Computational Chemistry Studiere den Effekt von Mutationen auf die Kinetik und Stabilität der Proteinfaltung. Die grüne Residue hat im Übergangszustand (TS) fast die gleiche Umgebung wie im gefalteten Protein (N). Daher wird TS um den gleichen Betrag destabilisiert wie N. Umgekehrtes gilt für die blaue Residue. ´ kennzeichnet Daten für eine Mutante Daggett, Fersht, TIBS 28, 18 (2003) -value Analyse

24 13. Vorlesung SS 2005Computational Chemistry Proteinfaltung mit Simulationen Faltung von -Helices und -Faltblättern dauert 100 ns bis 10 s. MD-Simulation auf einem Prozessor mit 2 fs Zeitschritt würde Jahre dauern. verschiedene Auswege aus diesem Dilemma -Vereinfachung der Proteindarstellung (HP- oder Go-Modelle) 0 steered Molecular Dynamics – Entfaltung unter Zwangskraft. Problem: Freies Energieprofil ist pfadabhängig (wird nicht behandelt). 1 Simulation der Entfaltung bei erhöhter Temperatur 2 systematische Variation entlang eines Faltungsparameters liefert die Hyperfläche der Freien Enthalpie 3 distributed computing – Faltungskinetik aus zahlreichen kurzen Simulationen

25 13. Vorlesung SS 2005Computational Chemistry (a)Kristallstruktur. (b) Entfaltungssimulation bei 100 K. Umgekehrte Reihen- folge der Schnappschüsse. Entfaltungssimulationen bei erhöhter Temperatur Faltung von CI2 S – Werte: charaktisiert Packungswech- selwirkungen der Residue und ihrer lokalen 2nd-Struktur. Gute Korrelation mit experimentel- len -Werten. Daggett, Fersht, TIBS 28, 18 (2003)

26 13. Vorlesung SS 2005Computational Chemistry Faltung von Barnase Daggett, Fersht, TIBS 28, 18 (2003) (a) NMR-Struktur von Barnase. (b) MD-Schnappschüsse von 225°C Simulation. (c) Korrelation von S und. Gute Übereinstimmung bis auf grüne Boxen ( 2 -Helix). Ihr helikaler Anteil im TS, aber auch im entfalteten Zustand ist in MD-Simulation grösser. Eventuell bedeutet dies, dass die -Analyse solch autonom faltende Einheiten nicht gut beschreiben kann.

27 13. Vorlesung SS 2005Computational Chemistry MD erlaubt detaillierte Einblicke in Faltungsprozess Daggett, Fersht, TIBS 28, 18 (2003)

28 13. Vorlesung SS 2005Computational Chemistry (a) Übergangszustände bei 100°C und 225°C sind sehr ähnlich. Erhöhung der Temperatur bewirkt also vermutlich keine Veränderung des allgemeinen Faltungs- pfades, sondern beschleunigt lediglich die Faltung/Entfaltung. (b) Helices sind selbst im denaturierten Zustand stabil. Die engrailed homeodomain ist also ein Beispiel für ein Protein, das gemäss dem Framework-Modell faltet. Faltung der engrailed homeodomain Daggett, Fersht, TIBS 28, 18 (2003)

29 13. Vorlesung SS 2005Computational Chemistry Proteine mit SH3-ähnlicher Struktur. Die Farbkodierung folgt den -Werten: blau für kleine -Werte, rot für grosse -Werte. Je grösser der -Wert, desto mehr gefaltet ist die entsprechende Region in der Region des Übergangszustands. Topologie ist nicht alles Die Unterschiede in dem Faltungsverhalten dieser 3 Proteine lassen sich nur durch spezifische Wechselwirkungen erklären. Rolle der Topologie Schymkowitz et al. PNAS 99, (2002)

30 13. Vorlesung SS 2005Computational Chemistry Kristallstruktur 1SRL (a) 6.5 Å contact map zwischen nicht-benach- barten Residuen für die Kristallstruktur. (b) contact maps aus MD-Simulationen für =0.2 (über Diagonale) =0.4 (unter Diagonale) (c) =0.6 (über Diagonale) =0.8 (unter Diagonale) entspricht der Anzahl an nativen Kontakten. Shea, Onuchic, Brooks, PNAS 99, (2002) Faltungssimulation entlang Reaktionskoordinate: src-SH3 Domäne

31 13. Vorlesung SS 2005Computational Chemistry Faltung der src-SH3 Domäne Shea, Onuchic, Brooks, PNAS 99, (2002) (a) pmf bei 298 K als Funktion der Anzahl nativer Kontakte: Profil zeigt klar downhill. (b) und (c) Erweiterung von (a) um den Gyrations-Radius bzw. die Anzahl an Wassermolekülen im Kern. (d) Überlagerung von 3 Entfaltungssimulationen bei 400 K. Profile wurde mit einem Zwangs- potential entlang von erzeugt.

32 13. Vorlesung SS 2005Computational Chemistry Das Design des 23-Residuen langen BBA5-Motifs ( -Hairpin / turn / -Helix) wurde von der Faltung von Zinkfinger inspiriert. NMR-Struktur von BBA5 Doppelmutante (2.2 Å) Doppelmutante (2.4 Å) Einzelmutante (2.5 Å) BBA5 besitzt starke Tendenz, Sekundärstruktur- elemente zu formen und kleinen hydrophoben Kern. Daher ist der Effekt von Ungenauigkeiten des Kraftfelds vielleicht eher klein. Faltungssimulation mit Distributed Computing für BBA5, ein Designer-Protein

33 13. Vorlesung SS 2005Computational Chemistry Faltungssimulation von 10 s Länge auf einem Prozessor würde Jahrzehnte dauern, selbst mit implizitem Solvens. Distributed computing simuliere Simulation von jeweils ns Länge mit implizitem Solvensmodell. Für ein kleines Protein mit einer Faltungszeit von 10 s sollten etwa 10 von Simulation innerhalb von 10 ns gefaltet sein Heimbenutzer stellten ihre PCs über Monate zur Verfügung um MD-Simulationen während idle-Zeit laufen zu lassen. Die akkumulierte CPU-Zeit entspricht ca. 1 Millionen CPU-Tage! Es wurden über 100 unabhängige Faltungsvorgänge beobachtet.

34 13. Vorlesung SS 2005Computational Chemistry C α backbone (blau 1-3 und 6-8, rot 11-21) und ausgewählte Seiten- ketten (Y1 Y3 Y6 W8 E13 L14 L17 L18) für Faltungstrajektorien, die nahe der nativen BBA5- Struktur enden (unten). a, 2.2 Å b, 2.4 Å c, 2.6 Å d, 3.0 Å e, Natives BBA5 f, Natives BBA1 mit artifizieller Aminosäure Fen in Orange g, Homologie- Model für Doppelmutante h, anderes Homologie-Modell. Faltungstrajektorien für Doppelmutante

35 13. Vorlesung SS 2005Computational Chemistry Logarithmierte Population von verschiedenen Kombinationen aus RMSD ca und Gyrations-Radius für a, 9000 sich faltende Trajektorien nach 1 ns, die aus einem gestreckten Zustand gestartet wurden. b, dieselben Trajektorien nach 20ns c, 2500 Simulationen des nativen Zustands nach 10 ns. Nach 20 ns ist das entfaltete Ensemble so kompakt wie das gefaltete Ensemble (Radius of Gyration, y-Achse). Es gibt aber nur einen kleinen Überlapp zwischen b und c: Ein kleiner Teil des gefalteten Ensembles (c) ist nach 10 ns teilweise entfaltet, und ein kleiner Teil des entfalteten Ensembles ist nach 20 ns gefaltet (b). Energie-Landschaft der Faltung

36 13. Vorlesung SS 2005Computational Chemistry (a) Helikale Strukturen (278K). b, Hairpin-Structuren (278K). c, Präsenz von mindestens 4 α-helikalen Residuen. d, Population eines richtigen β- Hairpins um Residuen 4-5. Native Ensembles sind gezeigt bei 278, 378, und 478 K (, +, und ). Faltende Ensembles bei 278 und 338 K sind mit und markiert. Der entfaltete Zustand ist zu ~40% α-helikal. Zunahme an Sekundärstruktur in Doppelmutante

37 13. Vorlesung SS 2005Computational Chemistry (a)CD-Spektra. Die isodichroischen Punkte (rot) deuten auf Zwei- Zustands-Modell hin. (b)Normalisierte Fluoreszenzspektren. (c)Temperatur-Sprung durch 10 ns Laserpuls induziert teilweise Entfaltung. (d)Zeitaufgelöste Beobachtung der um 11 nm rotverschobenen Fluoreszenz. Exp. Faltungszeit 7.5 ± 3.5 s Simulation: 6 s Quantitative Übereinstimmung! Exp. Faltungs-Thermodynamik und –kinetik von BBA5 Snow et al. Nature 420, 102 (2002)

38 13. Vorlesung SS 2005Computational Chemistry Faltung in den Simulationen. Bei höherer Temperatur geschieht Zunahme ca. 2 mal so schnell. Zunahme der gefalteten Zustände Snow et al. Nature 420, 102 (2002)

39 13. Vorlesung SS 2005Computational Chemistry Unfolded states and transition states Understanding protein folding not only involves predicting the folded structures of foldable sequences. In order to characterize the stability of a protein need free energy difference between folded and unfolded structure what is the structural ensemble of the unfolded state? In order to understand kinetics of folding process need structure of transition state Difficult to characterize these structures by experiments. Simulations are ideal tools.

40 13. Vorlesung SS 2005Computational Chemistry The protein folding network Transition states for protein folding have native topologies despite structural variability, Kindorff-Larsen, Vendrusculo, Paci & Dobson, Nat. Struct. Biol. 11, 443 (2004) Chris Dobson Michele Vendrusculo Emanuele Paci

41 13. Vorlesung SS 2005Computational Chemistry Structure and sequences of SH3 domains used Native state structure of the src SH3 domain colored from its N (red) to C terminus (blue). Sequence alignment of the three SH3 domains from src, Fyn and -spectrin. Residues in -strands are green and those in helices are blue. The nine boxed positions (I–IX) are the major hydrophobic core residues. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004)

42 13. Vorlesung SS 2005Computational Chemistry Representations of the transition state ensemble (TSE) (a) Three members of the TSE traced within an atomic density map 20 calculated from the backbone atoms of 20 representative structures from the TSE. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004)

43 13. Vorlesung SS 2005Computational Chemistry (b) The red ( = 500 K) and green ( = 640 K) points show the spread in radius of gyration and structural diversity in the TSE. The black points represent the comparable data from the native state ensemble. Four structures representative of different regions of the plot are colored according to the conformational variability (blue: RMS 1Å, red: RMS > 8Å Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) Structure and sequences of SH3 domains used Conformations of central 3- stranded sheet ( ) are much less variable than those of 1 and 5.

44 13. Vorlesung SS 2005Computational Chemistry Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) Energy maps of native state and TSE of src SH3 (c) Ensemble-averaged pairwise interaction energies between residues in the native state (above diagonal) and in the TSE (below diagonal). Many features found in the native state are also found in the TSE: - interactions between ( ), in particular between 3 and 4. - part of the RT loop packs on to 4. Surprising: although strands 1 and 5 are relatively disordered (previous slide) the interactions formed are very similar to those in the native state.

45 13. Vorlesung SS 2005Computational Chemistry TSEs of SH3 domains from -spectrin and Fyn (a,b) TSEs of (a) -spectrin SH3 domains and (b ) Fyn SH3 domains. Color coding according to the conformational variability as before. - Overall similarity to src-SH3 - differences - e.g. that RT loop does not pack onto to the rest of the protein (Fyn). - conformational variability of -spectrin SH3 (RMSD of C 3.0 Å) smaller than of src (5.4 Å) and Fyn (6.0 Å) Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) two TSE structuresenergy maps of the native state (above diagonal) and transition state (below diagonal).

46 13. Vorlesung SS 2005Computational Chemistry Native topology in the transition state? Either direct examination of 3D structures, or interaction energy maps suggest that TSE is characterized by overall native-like topology. Quantify the topological similarity between TSE and native state Here use DALI server; alignment of matrices of pairwise C distances. to generate a representative set of structures of small proteins: extract 311 domains of length residues from SCOP domain database. 179 can be meaningful aligned to src SH3. 11 domains have Z-score > 9.0. All of them are SH3 domains. 168 have Z < 4.3. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004)

47 13. Vorlesung SS 2005Computational Chemistry Native topology in the transition state? align 500 TSE structures to these 311 domains. In 479/500 cases, the best-matching SCOP-domain is an SH3 domain! despite their local variability, a large majority of the calculated TSE structures have the fold characteristic of an SH3 domain. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004)

48 13. Vorlesung SS 2005Computational Chemistry DALI alignment of TSE structures against SCOP domains Z-score > 5 indicates high structural similarity. Therefore, the structural similarity between the TSE and the best- matching SCOP is in fact quite low. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) the large majority of TSE structures are located in the outer periphery of the region of conformational space that corresponds to the SH3 fold. The rate-limiting step in folding seems the formation of a conformation with the global topology of the native state, see lecture 7.

49 13. Vorlesung SS 2005Computational Chemistry Solvent accessibility and secondary structure Relative solvent accessible surface area in the native state (black) and transition state (red) of src SH3. Arrows, the five native -strands. Many portions of the protein are only partially desolvated in the TSE! Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004)

50 13. Vorlesung SS 2005Computational Chemistry Does secondary structure formation have a primary role in protein folding? DSSPcont most highly formed elements are strands 3 and 4 (formed in > 60% TSE structures of src and Fyn and in > 45% for spectrin). Diverging turn preceding 2 also substantially populated. Experimentally, no isolated hairpin has structure. Hairpin between 3 and 4 must be stabilized by tertiary interactions. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) Solvent accessibility and secondary structure However, peptide corresponding to diverging loop adopts turn in solution.

51 13. Vorlesung SS 2005Computational Chemistry Network of interactions in native and transition states (a) Native state structure of src SH3. The residues in the hydrophobic core are shown in green and in ball-and-stick. (b,c) Graph representation of the interactions in (b) the native state and (c) the transition state. The nodes on the graphs in b and c are colored using the scheme shown in a. Only noncovalent interactions between amino acids more than two residues apart are considered. Network in TSE is less condense, contains critical interactions of hydrophobic core. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004)

52 13. Vorlesung SS 2005Computational Chemistry Key network of interactions in the folding TS Each point in the plot represents the result of a TSE determination of src SH3 using one of 220 triplets of residues. The S-score measures the topological similarity with the native state; high S -scores indicate high similarity. We encircle triplets in the plot when these contain residues at core position VII (Ala37, blue) and VIII (Ile48, yellow). Highlighted in the protein structure at the bottom left are six of the hydrophobic core residues corresponding to core positions III–VI colored with core positions III and IV green, V and VI red, VII blue and VIII yellow. Bottom right, interaction network among these six residues in the native and transition states, colored according to the same code. Lines are drawn when the average pairwise interaction energy is lower than -0.5 kcal mol. Solid lines, interactions present in both the native and transition states; dashed lines, interactions present in the native state only. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004)

53 13. Vorlesung SS 2005Computational Chemistry *Konzentration auf realistischere Modelle um wirkliche Proteine zu simulieren *Einfluß äußerer Effekte (z.B. Kräfte oder Viskosität) *Einfluß von Chaperonins *Einfluß der Viskosität auf Faltungsdynamik. wurde seit langem vorhergesagt, z.B. durch Simulationen, und wurde vor kurzem zum ersten Mal exp. bestätigt. Diffusion wichtig für Proteinfaltung (z.B. Simulation durch Brownian Dynamics Simulationen) es sollte nicht die Transition-State-Theorie verwendet werden, sondern die Kramersche Theorie Trends

54 13. Vorlesung SS 2005Computational Chemistry L. Serrano und Mitarbeiter, PNAS 99, (2002): Im Feld der Protein-Falter ist nun anerkannt, dass die Kombination von Experiment mit Theorie/Simulation die verbliebenen Rätsel der Proteinfaltung lösen werden. Die Modelle können wohl nur dann streng überprüft und verbessert werden wenn das experimentelle Know-how eine nächste Stufe erreicht. Ein Schritt hier: experimentelle Untersuchung von Einzelmolekülen! Die Anstrengungen und Erfahrungen im Blue-Gene-Projekt von IBM in einer Vielzahl von Kollaborationen werden für die theoretische Seite eine umfassende Evaluation der bestehenden Methoden bedeuten. Neue Techniken wie Replica-Exchange bewirken immer wieder signifikante Verbesserungen. Fazit


Herunterladen ppt "13. Vorlesung SS 2005Computational Chemistry Es gibt zwei grundsätzliche Sichtweisen des Proteinfaltungsproblems: 1 Was sind die treibenden Kräfte (driving."

Ähnliche Präsentationen


Google-Anzeigen