Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Seminar Modellüberprüfung SMV – Symbolic Model Verifier Referent: Markus Nosse Inhaltsübersicht: Grundlagen Das SMV System.

Ähnliche Präsentationen


Präsentation zum Thema: "Seminar Modellüberprüfung SMV – Symbolic Model Verifier Referent: Markus Nosse Inhaltsübersicht: Grundlagen Das SMV System."—  Präsentation transkript:

1 Seminar Modellüberprüfung SMV – Symbolic Model Verifier Referent: Markus Nosse Inhaltsübersicht: Grundlagen Das SMV System

2 Grundlagen – BDDs 1 Binäre Entscheidungsdiagramme Repräsentation von logischen Formeln Effiziente Algorithmen Kanonische Darstellungsform Repräsentation von Kripke Strukturen

3 Grundlagen – BDDs 2 Entscheidungsbaum Entscheidungsdiagramm ist (sehr viel) kompakter Beispiel: f = a b c a b b cccc a 0 1 c b 0 1

4 Grundlagen – BDDs 3 Zusammenfassen isomorpher Teilbäume Terminale Knoten var(v 1 ) = var(v 2 ) und low(v 1 ) = low(v 2 ) und high(v 1 ) = high(v 2 ) Elimination überflüssiger Entscheidungen low(v) = high(v) b c c c 11 01

5 Grundlagen – BDDs 4 Direkte Konstruktion mittels Shannon Expansion f(x 1,...,x n ) = (x i f 1 ) ( x i f 0 ), f k = f(x 1,...,x i =k,...,x n ), k = 0,1 Pro Anwendung ein Knoten für x i Teilbäume ergeben sich rekursiv aus f 0, f 1 a 01 b c c a b c b 01 a 01 c 1 c b 0 1 a c b c

6 Grundlagen - OBDDs Ordnung auf Variablen Minimalität, Kanonität Effiziente Algorithmen Reduce – Minimierung mit Aufwand O(|G|log|G|) Apply – Logische Verknüpfung in O(|G||H|) Restrict – Shannon Expansion in O(|G|log|G|) Optimale Ordnung coNP vollständiges Problem Ausreichend gute Ordnungen sind bestimmbar

7 Grundlagen - Repräsentation Kripke-Strukturen als OBDDs Binäre Codierung der Zustandsvariablen Codierte Übergangsrelation definiert über {0,1} Charakteristische Funktion ist logische Formel Darstellbar als OBDD a b s1s2 s1 s2: (a b) a b) s2 s1: (a b) a b) s2 s2: (a b) a b) (s1 s2) (s2 s1) (s2 s2)

8 Symbolische Modellüberprüfung 1 Algorithmus Check Eingabe: CTL Formel Ausgabe: Menge der erfüllenden Zustände als OBDD Bezug auf eine Kripke Struktur (S,R,L), Übergangsrelation R liegt als OBDD vor

9 Symbolische Modellüberprüfung 2 Rekursive Definition über der Struktur von CTL Formeln Atomare Aussage f = a Ergebnis ist Menge der Zustände, in denen a erfüllt ist Boolesche Operatoren f = f 1 f 2, f = f 1 Berechnung mittels Apply Operanden sind Check(f 1 ) und Check(f 2 ) CTL Operator EX f Subroutine CheckEX Parameter ist Check(f) Ergebnis ergibt sich aus Relational Product Computation

10 Symbolische Modellüberprüfung 3 CTL Operator EG f Subroutine CheckEG Parameter ist Check(f) Berechnung über größten Fixpunkt CTL Operator E[f U g] Subroutine CheckEU Parameter sind Check(f), Check(g) Berechnung über kleinsten Fixpunkt pp q pp q p p q pp q E[p U q]:

11 SMV – Überblick 1 SMV – Symbolic Model Verifier Basistypen Boolean Endliche Integer Intervalle Aufzählungstypen Syntaktische Abkürzungen für CTL Formeln Signale Im Sinne von Variablen Definition als : Eindeutige Zuweisungen, keine zirkulären Abhängigkeiten Operatoren init ( ) und next ( )

12 SMV - Überblick 2 Module Unterstützung von komponentenorientieren Modellen Mehrfach instanziierbar Parametrisierbar Eingabe- und Ausgabeparameter Synchrone oder asynchrone Modellierung Prozesse Schlüsselwort process Analogie: Prozessmodell auf Einprozessorsystem

13 SMV – Überblick 3 Spezifikation Mittels CTL Formeln Temporale Operatoren X, G, F und U neXt, Globally, in the Future, Until Implizite universelle Quantifizierung Gegenbeispiele Voraussetzungen für Beweise using … prove Annahme von nichtbeweisbaren Eigenschaften assume … Fairness-Bedingungen

14 Weitere Sprachkonstrukte 1 Alles syntaktische Abkürzungen Komplexe Typen Arrays Mit beliebigem Typ, auch n-dimensional oder generisch Index aufsteigend (0..7) oder absteigend (7..0) Bsp: proc: array[0..1]; bits: array[7..0] of boolean; Strukturierte Typen Definition über Module Ausnahme: Strukturen ohne Parameter Bsp: hands : struct { left, right: boolean; };

15 Weitere Sprachkonstrukte 2 If Anweisung if ( ) [ else ] Statements analog zu C oder Java Bsp: if (test) a = 1; else b = 1; Default Regeln Zustand des modellierten Systems entspricht Belegung der Zustandsvariablen Semantik undefinierter Zustandsvariablen? Defaults bestimmen Werte für undefinierte Variablen Explizite Regeln definierbar default in

16 Weitere Sprachkonstrukte 3 Case und Switch Anweisung Syntactic Sugar für if-else-Kaskaden Schleifen Sogenannte Konstruktor Loops werden zur Compilezeit ausgewertet und komplett ausgerollt

17 Fortgeschrittene Modellierung Modellierung in Schichten Bessere Abstraktion möglich Ausnutzen von Symmetrien Verifikation von Repräsentanten Anlehnung an Induktionsbeweise Bewertung Mächtige Konzepte Fehlerträchtige Modellierung wegen Komplexität

18 Beispiel Mutex MODULE proc(state, otherState) { output state: stateSet; input otherState: stateSet; init(state) := noncritical; case { (state = noncritical) : next(state) := {trying, noncritical}; (state = trying) & (otherState = noncritical) : next(state) := critical; (state = trying) & (otherState = trying) : next(state) := critical; (state = critical) : next(state) := {critical, noncritical}; default: next(state) := state; }; }

19 Beispiel Mutex typedef stateSet {noncritical, trying, critical}; MODULE main() { proc: array 0..1; for(i=0; i<2; i = i+1) proc[i] : process proc(proc[(i+1) mod 2].otherState, proc[(i+1) mod 2].state); fairness: assert G F proc[0].running & G F proc[1].running; proc0_fair: assert G F ~(proc[0].state = critical); proc1_fair: assert G F ~(proc[1].state = critical); mutex_violation: assert G F ~((proc[0].state = critical) & (proc[1].state = critical)); using fairness, proc0_fair, proc1_fair prove mutex_violation; assume fairness, proc0_fair, proc1_fair; }

20 Bewertung und Stellungnahme Praxistauglich Siehe Verifikation des FutureBus+ Kommerzielle Tools verfügbar, deutet auf industriellen Einsatz hin SMV scheint hardwarelastig zu sein Interessante Technologie, aber Theorie nicht leicht Modellierung auch nicht leicht


Herunterladen ppt "Seminar Modellüberprüfung SMV – Symbolic Model Verifier Referent: Markus Nosse Inhaltsübersicht: Grundlagen Das SMV System."

Ähnliche Präsentationen


Google-Anzeigen