Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Sentiment Analysis Studienprojekt

Ähnliche Präsentationen


Präsentation zum Thema: "Sentiment Analysis Studienprojekt"—  Präsentation transkript:

1 Sentiment Analysis Studienprojekt
Dozenten: Dr. Detlef Prescher, Matthias Hartung Svetlana Dedova, Stefanie Pischek, Vladlena Belinschi Ruprecht-Karls-Universität Heidelberg Seminar für Computerlinguistik Sommersemester 2007 ( )

2 Inhalt Kurze Einführung in das Themengebiet Grundsätzliche Lösungen
Unsere Wahl Baseline Systemarchitektur Entwicklung einer Lösung Testen und Evaluieren Mögliche Verbesserungen Arbeitsschritte und Zeitplan (Vorläufig) Stabilität der Ergebnisse bei Anwendung an andere Korpora Mögliche weitere Erweiterungen Zusammenfassung Quellenangaben

3 Kurze Einführung in das Themengebiet
„Sentiment“ / „Semantic Orientation“ (SO) / „Opinion“ ist die subjektive Meinung über einen Gegenstand / Aktion / Prozess; positiver oder negativer Inhalt eines Wortes /Satzes /Textes. (Taboada et al., 2006) „Sentiment Analysis“ bezeichnet die automatische Auswertung von Texten mit dem Ziel, die Meinung des Verfassers ausfindig zu machen. (Wikipedia) Grundidee/Hypothese ist folgendes: man vermutet, das, dass wenn die SO aller relativen Wörter im Text bekannt sind, kann man die SO des ganzen Textes ermitteln.

4 Kurze Einführung in das Themengebiet
Motivation: Ständig steigende Informationsmenge im Internet Texte können oft lang und unübersichtlich sein Filterung oft anhand eines Ranking (ohne Sentiment) ________________ Sentement Analysis

5 Kurze Einführung in das Themengebiet
Anwendungsgebiete: Produktbewertung Hu/Liu: Mining and Summarizing Customer Reviews Politische Texte Pang/Lee: Get out the vote: Determining support or opposition from Congressional floor-debate transcripts s AUTONOMY ETALK (http://www.autonomy.com/content/News/Releases/2007/0307.en.html) Blogs Owsley/Sood/Hammond: Domain Specific Affective Classification of Documents Film- und Buchkritiken Pang/Lee: Thumbs up? Sentiment Classification using Machine Learning Techniques

6 Grundsätzliche Lösungen
Die Interesse an der Sentiment Klassifikation ist momentan von der großen Bedeutung. Die Recherche hat ergeben, dass Sentiment Analysis viele Bereichen involviert wird: Manuelle oder halbmanuelle Bildung der Lexika Automatische Bildung der Lexika Extraktion von Subjektiven Inhalt Maschinelles Lernen Diskurs Analyse

7 Grundsätzliche Lösungen
Manuelle oder halbmanuelle Bildung der Lexika „An operational System for detecting and tracking opinion online discussion“ von Tong, R.M. Working Notes of the ACM SIGIR 2001 Workshop on Operational Text Classification (pp. 1-6). New York, NY: ACM Das System: 1. Findet online Filmkritiken 2. Bewertet sie aufgrund der manuell erstellten Lexika 3. Erstellt einen Graph über die Zeit

8 Grundsätzliche Lösungen
Automatische Bildung der Lexika „Predicting the Semantic Orientation of Adjectives“ von Hatzivassiloglou and McKeown in Proceedings of the 35th Annual Meeting of the ACL and the 8th Conference of the European Chupter of the ACL, pp , 1997. (1) The tax proposal was simplistic but well-received by the public. (2) *The tax proposal was simplistic and well-received by the public. 4 Schritt Algorithmus: 1. Extraktion von Adjektiven und Konjunktionen 2. Paarweise markieren der Adjektive um ein Graph bilden zu können 3. Clustering 4. Zuordnung der Clusters. Das Experiment: Corpus: 21 Million Wörter Genauigkeit: 78% bis 92% (hängt von der Korpusgröße ab)

9 Grundsätzliche Lösungen
Extraktion von Subjektiven Inhalt „Learning Subjective Adjectives from Corpora“ von Wiebe, Janice M. in Proceeding of the 17th National Conference on Artificial Intellegence. Menlo Park, CA: AAAI Press (1) At several different layers, it‘s a fascinating tale. (subjektiv) (2) Bell Industries Inc. Increased ist quarterly to 10 cents from 7 cents a share. (objektiv) Vorgehensweise: 1. Manuelles Annotieren von Texten (die Sätze werden nur dann als subjektiv gewertet, wenn mindestens 1 Adjektiv des Sets vorkommt) 2. Manuelles Identifizieren dieser Ausdrücke im gewonnenen Korpus 3. Clustering nach distributiver Ähnlichkeit 4. Verfeinerung der Ergebnisse mit Polarität und Stärke 5. Bildung eines automatischen Lernsystems Das Experiment: Korpus: 1001 Sätze Genauigkeit: 60% - 79% (hängt von Verfeinerung ab)

10 Grundsätzliche Lösungen
Maschinelles Lernen „Thumbs Up? Semantic Orientation Applied to Unsupervised Classification of Reviews“ von Turney, Peter D. Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphis, July pp Vorgehensweise: 1. Extraktion der Phrasen nach 5 POS-Mustern (z.B. Adj+Nom, Abv+Adj) 2. Bestimmung der SO durch Pointwise Mutual Information and Information Retrieval (PMI-IR) 3. Berechnung des Mittelwertes der SO für den ganzen Text. Das Experiment: Korpus: 410 Rezensionen aus 4 verschiedenen Domänen: Auto-, Bank-, Film- und Reisezielrezensionen Genauigkeit: 74% (66% - 84% hängt von Domäne ab)

11 Grundsätzliche Lösungen
Diskurs Analyse "Sentiment classification techniques for tracking literary reputation" von Taboada Proceedings of LREC Workshop, "Towards Computational Models of Literary Analysis". Genoa, Italy. May pp NB: Berücksichtigen der Textstruktur Stand des Projektes: in Prozess Vorgehensweise: 1. Halbautomatische Bildung der Lexika: OS der Adjektive werden mittels AND –Operator der Google Suchmaschine berechnet 2. Es werden die Gewichte den Adjektiven zugewiesen hängen davon, in welchem Teil des Textes (am Anfang, in der Mitte oder am Ende) das Adjektiv vorkommt. 3. Statt den Mittelwert der SO für den ganzen Text zu berechen (die Methode hat sich nicht besonders gut bewiesen), wir der Diskursparser eingesetzt. Dieser bestimmt Haupt- und Nabensätze und die Relationen zwischen den beiden. 4. Die Hauptsätze werden extrahiert und nur von diesen wird anhand der Lexika die SO berechnet. Das Experiment: Korpus: literarische Kritiken über 6 Autoren

12 Unsere Wahl „Thumbs up? Sentiment Classification using Machine Learning Techniques” von B.Pang and L.Lee in Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp , 2002. Vorgehensweise: 1. Korpus aus ausgewählte Filmkritiken die eine Bewertung haben 2. Einteilung der Texte in positiv, negativ und neutral durch Extraktion der Bewertung 3. Häufigkeitsanalyse der Adjektive in den positiven und den negativen Texten 4. Bildung von positiver und negativer Wörterliste 5. Optimierung der gewonnenen Sets Warum? Einfachere Lösung Liefert gute Ergebnisse Besonders gut geeignet, weil Filmkritiken bewertet werden Interesse, ob es genauso gut für das Deutsche funktioniert

13 Baseline: Systemarchitektur 1
(words_manuell) Baseline: Systemarchitektur 1 Manuelle Erstellung der Listen Verteilung in positiv/negativ (datenbank_FK) Datenbank für Filmkritiken POS Wörterliste (n) NEG Wörterliste (n) Positive Texte DB Negative Texte DB POS Wörterliste (p) Freq (f) von POS/NEG. Wörtern in beiden DB NEG Wörterliste (n) Good 3 + wonderfull 4 (main) (main)

14 Baseline: Systemarchitektur 2
(words_semiAutomatic) Baseline: Systemarchitektur 2 TreeTagger Freq (f) count of words in Database Verteilung in positiv/negativ (datenbank_FK) Datenbank für Filmkritiken 7 häufigste POS Wörterliste (p) 7 häufigste NEG Wörterliste (n) Positive Texte DB Negative Texte DB POS Wörterliste (p) Freq (f) von POS/NEG. Wörtern in beiden DB NEG Wörterliste (n) Good 3 + wonderfull 4 (main)

15 Baseline: Entwicklung einer Lösung
Corpus: Quelle: Filmkritiken von zelluloid.de Format: html-Texte Anzahl der Texte: 1054? (hängt von der Erstellung ab) Erstellung: automatisch/halbautomatisch? Automatische Bildung von 2 Datenbanken: positiv (100-55%) und negativ (0-45%) Verteilung der Daten in Development- und Testsets: MainSet: ca 554 Texten Developmentset: ca. 300 Texte Testset: ca. 300 Texte html -> txt

16 Baseline: Entwicklung einer Lösung
Bildung von Wortlisten aus Adjektiven. Warum? Diese sind gute Indikatoren für die subjektive Meinung. Keyword-Liste von Baseline 1: Manuelle Erstellung der Liste anhand der Gefühl/Häuftigkeit Keyword-Liste von Baseline 2: Automatische Erstellung der Liste anhand der Häufigkeit. txt - > TreeTagger - > getaggt.txt Aus dem getaggt.txt werden die Adjektive, Adverbien(?) und Satzendzeichen (!, ?) genommen und die Frequenzlisten gebildet. Die häufigsten 7 (?) werden in die Keyword-Liste integriert.

17 Baseline: Entwicklung einer Lösung
Funktion findKeyWord.py: Input: text.txt, POSKeyWordList.txt, NEGKeyWordList.txt Output: Dokumentvektor doc1(POS)={word1: x-mal, word2: y-mal, ..., wordn: z-mal} doc1(NEG)={word1: x-mal, word2: y-mal, ..., wordn: z-mal} Funktion compareVectors.py: Input: Dokumentenvektoren Vergleichsmethode: nach Vorkommen im Text Output: Bewertung (positiv, negativ, neutral) Der Output wird in eine Datei namens resultsForPOS.txt und resultsForNEG.txt abgespeichert

18 Baseline: Testen und Evaluieren
Input: Developmentset Output: Genauigkeit (wie viele Dokumenten richtig erkannt wurden) und Ties (wie viele POS/NEG Dokumenten als neutrale erkannt wurden) Test 2: Input: Testset Output: Genauigkeit und Ties Erstellen einer Vergleichsübersicht Projektversion Developmentset Testset Genauigkeit Ties Baseline 1 ...% Baseline 2

19 Mögliche Verbesserungen
WO?: in der Funktion compareVectors.py Vergleichsmethode: nach Häufigkeit (Aufsummieren aller Treffe im Text) Verbesserung 2: WO?: in den KeyWord-Listen Hinzufügen von Gewichtung anhand der Frequenzen Verbesserung 3: Hinzufügen von negativen Partikeln wie „kein“, „nicht“ an die Wörter in den Listen

20 Verbesserung 3 (partikeln_semiAutomatic) TreeTagger
Freq (f) count of NP = Partikeln + Adjektiv in Database (wordsPartikeln_Automatic) 5 - 10? häufigste NEG. Partikeln Wörterliste (a) (z.B. kein(e), nicht, ...) POS Wörter + NEG. Partikeln NEG Wörte Liste 1 (words_semiAutomatic) NEG Wörter + NEG. Partikeln (words_semiAutomatic) 7 häufigste POS Wörterliste (p) 7 häufigste NEG Wörterliste (n) Note: Negative Artikeln sollen wir manuell sammmeln? POS Wörte Liste 1 (main) (datenbank_FK)

21 Arbeitsschritte und Zeitplan (Vorläufig)
Reviews extrahieren Corpora 1 Aufbereitung der benötigen Corpora Evaluierung der Corpora (manuell /halbautomatisch / automatisch?) Html -> text Bewertung extrahieren Vladlena Vladlena Reviews extrahieren Corpora 2 Review nach POS und NEG trennen Bewertung extrahieren Vladlena Vladlena Vladlena (datenbank_FK) Key Wörter Manuell erstellen (words_manuell) Häufigkeit zählen (main) Bau eine Evaluierungssystem Stefanie Key Wörter halb-autom. Erstellen mit der Hilfe von Tagger Häufigkeit vergleichen Stefanie Svetlana Svetlana Partikeln Wörter halb-autom. Erstellen mit der Hilfe von Tagger Verbesserung 3 Verbesserung 2 Verbesserung 1 (wordsPartikeln_Automatic) (words_semiAutomatic) (partikeln_semiAutomatic) Vladlena Stefanie Svetlana Svetlana

22 Quellenangaben Gammon, M.: Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis. Hatzivassiloglou / McKeown: Predicting the Semantic Orientation of Adjectives. In: Proceedings of the 35th Annual Meeting of the ACL and the 8th Conference of the European Chupter of the ACL,1997.pp Hu / Liu: Mining and Summarizing Customer Reviews. Owsley / Sood / Hammond: Domain Specific Affective Classification of Documents. Pang, B. / Lee, L.: Thumbs up? Sentiment Classification using Machine Learning Techniques. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp Taboada: Sentiment classification techniques for tracking literary reputation.In Proceedings of LREC Workshop, ‘Towards Computational Models of Literary Analysis‘. Genoa, Italy, May pp Thomas, M. / Pang, B. / Lee, L.: Get out the vote: Determining support or opposition from Congressional floor-debate transcripts. Tong, R.M.: An operational System for detecting and tracking opinion online discussion. Working Notes of the ACM SIGIR 2001 Workshop on Operational Text Classification. New York, NY: ACM. pp. 1-6. Turney, Peter D.: Thumbs Up? Semantic Orientation Applied to Unsupervised Classification of Reviews. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphis, July pp Wiebe, Janice M.: Learning Subjective Adjectives from Corpora. In: Proceeding of the 17th National Conference on Artificial Intellegence. Menlo Park, CA: AAAI Press


Herunterladen ppt "Sentiment Analysis Studienprojekt"

Ähnliche Präsentationen


Google-Anzeigen