Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Fakultät für Informatik Technische Universität Wien Rudolf FREUND Rechnen mit Molekülen

Ähnliche Präsentationen


Präsentation zum Thema: "Fakultät für Informatik Technische Universität Wien Rudolf FREUND Rechnen mit Molekülen"—  Präsentation transkript:

1 Fakultät für Informatik Technische Universität Wien Rudolf FREUND Rechnen mit Molekülen

2 Molecular Computing Überblick ► DNA Computing ► Membrane Computing ● Watson-Crick, Sticker Systems ● Splicing, Cutting/Recombination ● Test Tube Systems ● P-Systeme - ein allgemeines Modell ● Ausblick ● P-Systeme - ausgewählte Resultate ● P-Systeme - weitere Varianten/Modelle

3 NATURAL COMPUTING 1.Lerne von der Natur, um neue theoretische Modelle zu entwickeln (z.B. Computermodelle). 2.Verwende neue theoretische wissenschaftliche Erkenntnisse aus den Naturwissenschaften und ihren Anwendungsbereichen, um die (Vorgänge in der) Natur besser zu verstehen. •Quantum Computing •Molecular Computing

4 • ist eines der aktuellsten und sich am schnellsten entwickelnden Gebiete der Informatik • vereint InformatikerInnen, BiologInnen, MedizinerInnen • eröffnet neue Möglichkeiten für alle Bereiche: ► Computer helfen bei der - Entschlüsselung des menschlischen Genoms, - Simulation biologischer Prozesse, - Darstellung und Aufbereitung medizinischer Daten; ► InformatikerInnen lernen von der Natur; die größte Herausforderung: die gewonnenen theoretischen Erkenntnisse wieder in die Praxis umzusetzen, um damit zu einem besseren Verständnis biologischer Prozesse beizutragen. Molecular Computing

5 • begann Oktober 1990, war auf 15 Jahre geplant • bereits 2 Jahre früher (2003) beendet Grund: rapider technologischer Fortschritt • Projektziele - Identifizierung aller Gene in menschlicher DNA (ca ), - Bestimmung der etwa 3 Milliarden Basispaare, - Speicherung dieser Informationen in Datenbanken, - Verbesserung der Methoden für die Datenanalyse, - Transferierung verwandter Technologien in den privaten Sektor, - Beachtung ethischer, juristischer, and sozialer Aspekte. Human Genome Project

6 • Medizinische Experten-/Diagnose-Systeme • Telemedizin • graphische Darstellung von NMR-Daten etc. • Simulation biologischer Prozesse • Drug Design... Bioinformatik und Computationale Biologie

7 European EMCC Molecular Computing Consortium Präsident: Grzegorz ROZENBERG (Leiden) Österreichische Gruppe: Rudolf FREUND Franziska FREUND Marion OSWALD Franz WACHTLER

8 Watson-Crick-Komplementarität Adenin(e) Thymin(e) Cytosin(e) Guanin(e) DNA DeoxyriboNucleic Acid Doppelhelix 3´ … A T C G … 5´ 5´ … T A G C … 3´ || || ||| ||| DNS DeoxyriboNucleinSäure

9 Sticker Systems „Dominoes“ Freund R., Păun Gh., Rozenberg G., Salomaa A., Bidirectional Sticker Systems, Pacific Symposium on Biocomputing '98, World Scientific, 1998.

10 Sticker Systems Freund R., Păun Gh., Rozenberg G., Salomaa A., Bidirectional Sticker Systems, Pacific Symposium on Biocomputing '98, World Scientific, Satz. Jede rekursiv aufzählbare Sprache L kann als Projektion einer von einem zweiseitigen Sticker-System erzeugten Sprache dargestellt werden.

11 Sticker Systems - Universalität 3´ … A T C G … 5´ 5´ … T A G C … 3´ || || ||| ||| Watson-Crick-Komplementarität entspricht Durchschnitt ! Durchschnitt zweier linearer Sprachen (lineare Grammatik mit Produktionen der Gestalt A → uBv, C → λ ), Projektion ergibt rekursiv aufzählbare Sprache.

12 DNA Splicing 3´ … A T C G … 5´ 5´ … T A G C … 3´ || || ||| ||| 3´ … A T C  C … 5´ 5´ … T  A G G … 3´ || |||sticky ends 3´ … T T C  G … 5´ 5´ … A  A G C … 3´ || |||sticky ends 3´ … T T C C … 5´ 5´ … A A G G … 3´ || || ||| ||| splicing 1 splicing 2 recombination 2 recombination

13 DNA Computing - Splicing SPLICING RULE r = u 1 # u 2 $ u 3 # u 4 x = x 1 u 1 u 2 x 2, y = y 1 u 3 u 4 y 2, SPLICING ( x, y )  r ( z, w ) z = x 1 u 1 u 4 y 2, w = y 1 u 3 u 2 x 2 T. Head: Formal language theory and DNA: An analysis of the generative capacity of specific recombinant behaviors. Bull. Math. Biology, 49 (1987), D. Pixton: Splicing in abstract families of languages. Theoretical Computer Science 234 (2000), E. Csuhaj-Varjú, R. Freund, L. Kari, Gh. Păun: DNA computing based on splicing: universality results. In: L. Hunter, T. Klein (Eds.): Pacific Symposium on Biocomputing '96, WSP (1996),

14 Splicing Splicing: r = u 1 # u 2 $ u 3 # u 4, x = x 1 u 1 u 2 x 2, y = y 1 u 3 u 4 y 2, ( x, y )  r ( z, w ) z = x 1 u 1 u 4 y 2, w = y 1 u 3 u 2 x 2 x 1 u 1 u 2 x 2 y 1 u 3 u 4 y 2 x 1 u 1 u 4 y 2 y 1 u 3 u 2 x x y z w

15 Cut and Recombine (CR) CUTTING RULE u 1 # [m] $ [n] # u 2 RECOMBINATION RULE ( [m], [n] ) x = x 1 u 1 u 2 x 2, y = x 1 u 1 [m], z = [n] u 2 y 2 CUTTING x  r ( y, z ) x = x 1 u 1 u 2 x 2, y = x 1 u 1 [m], z = [n] u 2 y 2 RECOMBINATION ( y, z )  r x R. Freund, F. Wachtler: Universal systems with operations related to splicing. Computers and Art. Intelligence 15 (4).

16 Cut and Paste (CP) CUTTING RULE u 1 # [m] c [n] # u 2 PASTING RULE ( [m], c, [n] ) x = x 1 u 1 c u 2 x 2, y = x 1 u 1 [m], z = [n] u 2 y 2 CUTTING x  r ( y, z ) x = x 1 u 1 c u 2 x 2, y = x 1 u 1 [m], z = [n] u 2 y 2 PASTING ( y, z )  r x

17 Splicing Systems / CR/CP Systems ohne zusätzliche Mechanismen können nur - unendlich viele Regeln computationale Vollständigkeit (Universalität): reguläre Sprachen erzeugt werden - Multimengen - periodische Regelmengen - Test Tube Systems - Membransysteme - Kontrollmechnismen (Kontrollgraphen,...)

18 Test Tube Systems - Literatur L. M. Adleman: Molecular computation of solutions to combinatorial problems. Science, 226 (Nov. 1994), (lab solution of small travelling salesman problem) E. Csuhaj-Varjú, L. Kari, and Gh. Păun: Test tube distributed systems based on splicing. Computers and Artificial Intelligence, Vol. 15 (2) (1996), R. Freund, E. Csuhaj-Varjú, and F. Wachtler: Test tube systems with cutting/recombination operations. In: R.B. Altman, A.K. Dunker, L. Hunter, T. Klein (Eds.): Pacific Symposium on Biocomputing '97 (1997),

19 Test Tube Systems - Definition  = ( B, B T, n, A, , D, f ) • B Objekte • B T  B Terminalobjekte • n Anzahl der Test Tubes • A = ( A 1,..., A n ) A i Axiome in Tube i •  = (  1,...,  n )  i Operationen in Tube i • D Output/Input-Relationen der Gestalt ( i, F, j ) ; F ist ein Filter zwischen Tubes i und j • f  { 1,..., n } finaler Test Tube für Resultate

20 Test Tube Systems - Schema Filter (i, F, j) Tube iTube j Axiome i Regeln i Axiome j Regeln j

21 TTS – Beginn eines Berechnungsschritts Die Berechnungen im System  gehen folgendermaßen vor sich: Am Beginn der Berechnung werden die Axiome entsprechend der durch A vorgegebenen Verteilung auf die n Test Tubes verteilt, d.h., Test Tube T i beginnt mit A i. Ist nun L i der Inhalt von Test Tube T i am Beginn eines Ableitungsschrittes, dann operieren die Regeln von  auf L i und wir erhalten  i *( L i ).

22 TTS – Reaktionen in den Test Tubes Filter (i, F, j) Tube iTube j Axiome i Regeln i Axiome j Regeln j

23 TTS – Filtern und Wiederverteilen Filter (i, F, j) Tube iTube j

24 TTS - Wiederverteilung Der nächste Teilschritt ist die Wiederverteilung der Elemente von  i *(L i ) über alle Test Tubes gemäß den entsprechenden Output/Input- Relationen aus D, d.h., ist ( i,F,j) in D, dann erhält der Test Tube T j von  i *(L i ) nun  i *(L i )  F, während der Rest von  i *(L i ), der nicht über andere Test Tubes verteilt werden kann, in T i verbleibt.

25 TTS – nächster Ableitungsschritt Filter (i, F, j) Tube iTube j Axiome i Regeln i Axiome j Regeln j

26 TTS – Resultat einer Berechnung Das Resultat der Berechnungen in  besteht aus allen Objekten aus B T im finalen Test Tube. Das Resultat der Berechnungen in  könnte auch aus allen Objekten aus B im finalen Test Tube bestehen, d.h., in diesem Falle nehmen wir B = B T.

27 When two tubes are enough

28 TTS – Literatur Rudolf Freund, Franziska Freund: Test Tube Systems: When two tubes are enough. DLT '99 and in: G. Rozenberg, W. Thomas (Eds.): Developments in Language Theory, Foundations, Applications and Perspectives. WSP, Singapore (2000), Rudolf Freund, Franziska Freund: Test Tube Systems or How to Bake a DNA Cake. Acta Cybernetica, Vol. 12, Nr. 4,

29 TTS – Universalität mit CR mit nur zwei Tubes und Filtern, die jeweils eine endliche Vereinigung von Mengen der Gestalt mW + n mit Markierungen m,n sind, erzeugt werden.  = (MW*M, [e]W + [f], 2, (A 1, Ø ), (C 1  R 1, C 2 ), {(1, F 1, 2), (2, F 2, 1)}, {2}) Beweis. Wir simulieren eine Grammatik G = (N,T,P,S) mit L(G) = L{d}, wobei d jeweils im letzten Ableitungsschritt in G erzeugt wird. Ein Wort w wird durch rotierte Versionen [x]w 2 Bw 1 [y], w = w 1 w 2, repräsentiert. Terminalwörter sind von der Gestalt [e]w[f], w  T +. Produktionen in P: p:    mit 1  |  |  2, 0  |  |  2. V = N  T  {B}, W = V  {d}. Satz. Jede rekursiv aufzählbare Sprache L kann von einem TTS mit CR-Regeln

30 TTS – Universalität mit CR (Beweis) M = {[e],[f],[e´],[f´], [x],[y],[x´],[y´]}  { [l p ], [r p ], [l p ´] |p  Lab}  {[x c ],[y c ],[x c ´],[y c ´] |c  Lab} A 1 = {[l p ]  [y] |p  Lab, p:    }  {[x]c[x c ´], [y c ´] [y] |c  V}  {[x]BS[y]} R 1 = {([r p ],[l p ])|p  Lab}  {([x c ´], [x c ] ), ([y c ], [y c ´]) |c  V} C 1 = {u#[r p ] $ [l p ´]#  [y] | u  V, p  Lab, p:   , |  |=2}  {u#[r p ] $ [l p ´]#  [y] | u  V 2  {B}, p  Lab, p:   , |  |=1} C 2 = {u#[y c ] $ [y´]#c[y], [x]#[x´] $ [x c ]#u | u,c  V}  {[x]B#[e´] $ [e]#u, u#[f] $ [f´]#d[y] | u  T} D = {(1, F 1, 2), (2, F 2, 1)} F 1 = [x]W + [y] F 2 =  c  V [x c ]W + [y c ] 

31 TTS – Universalität mit Splicing Satz. Jede rekursiv aufzählbare Sprache L kann von einem TTS mit Splicing-Regeln mit nur zwei Tubes und Filtern, die jeweils eine endliche Vereinigung von Mengen der Gestalt {A}W + {B} mit A,B  W sind, erzeugt werden.  = (W*,{E}W + {F}, 2, (A 1,A 2 ), (R 1 R 2 ), {(1,F 1,2),(2,F 2,1)}, {2})

32 (Wort-)Grammatiken Eine Grammatik G ist ein Konstrukt (N,T,P,S), ∙ N Nicht-Terminalsymbole; ∙ T Terminalsymbole, N ∩ T = { }; ∙ P Produktionen der Gestalt u → v, u  V*, v  V +, wobei V := N  T; ∙ S  N Startsymbol (oder S  V* Axiom). Ableitungsrelation für u → v  P definiert durch xuy  u→v xvy für alle x,y  V*, was in Summe die bekannte Ableitungsrelation  G für G ergibt. L(G) = { v  T* | S  G * v }. Sprachfamilie L(ARB): beliebige Produktionen; Sprachfamilie L(CF): kontextfreie Produktionen der Gestalt A → v mit A  N und v  V*.

33 Matrixgrammatiken M eine endliche Menge endlicher Folgen von Produktionen aus P ist (ein Element von M heißt Matrix). Für eine Matrix m(i) = [m i,1,…,m i,n (i) ] in M und v,u  V* definieren wir v  m(i) u genau dann wenn w 0,w 1,…,w n(i)  V* sowie w 0 = v, w n(i) = u, und für alle j, 1 ≤ j ≤ n(i), w j-1  m(i,j) w j gemäß  G. Eine Matrixgrammatik G M vom Typ X ist ein Konstrukt Sprachfamilie L(X-MAT) L(G M ) = {v  T* | w  m(i,1) w 1 …  m(i,k) w k, w k = v, w j  V*, m(i,j)  M für 1 ≤ j ≤ k,k ≥ 1}. (N,T,P,M,w) wobei G = (N,T,P,w) eine Grammatik vom Typ X und

34 Multimengen Eine Multimenge u  ist eine Abbildung von V in IN, wobei IN die Menge der nicht-negativen ganzen Zahlen ist. Eine Multimenge u  kann auch durch das entsprechende Wort aus V* angegeben werden, das jedes Symbol aus V genau so oft enthält wie u oder, auch noch anders formuliert, durch ein Wort aus V*, dessen Parikh- Vektor den Koeffizienten von u entspricht: Multimenge entspricht Parikh-Vektor (n 1,...,n k ) entspricht Wort a 1 n 1...a k n k. Wir betrachten auch Multimengen u , wobei IN  = IN  {  }.

35 Multimengen-Grammatiken Eine Multimengen-Grammatik G ist ein Konstrukt (N,T,P,S), ∙ N Nicht-Terminalsymbole; ∙ T Terminalsymbole, N ∩ T = { }; ∙ P Produktionen der Gestalt u → v, u,v , u nicht die leere Multimenge; V := N  T; ∙ S  Axiom. Ableitungsrelation für u → v  P definiert durch xu  u→v xv für alle x , in Summe  G für G. L(G) = { v  | S  G * v }. Sprachfamilie Ps(ARB): beliebige Produktionen; Sprachfamilie Ps(CF): kontextfreie Produktionen der Gestalt A → v mit A  N und v . Ps... Parikh sets

36 eingeführt von Gheorghe PǍUN (1998) - gaben der theoretischen Informatik neue Impulse, im Speziellen dem Gebiet der formalen Sprachen; - abstrahieren Eigenschaften lebender Zellen; - erlauben die Konstruktion verschiedenster Modelle universeller Computer, - eingeschränkte Modelle erlauben die Charakterisierung bekannter Sprachfamilien. Membransysteme

37 (eingeführt von Gheorghe PǍUN, 1998) Membranstruktur Multimengen von Objekten Evolutions-/Kommunikations-Regeln angewendet • im maximal/minimal parallelen Modus • im sequentiellen/asynchronen Modus Viele Varianten sind universell. Auflösung / Erzeugung von Membranen P-Systeme (Membranysteme) Gheorghe Păun: Membrane Computing - An Introduction. Springer-Verlag, Berlin, The P Systems Web Page:

38 Hautmembran elementare Membran Region Membranstruktur [ 1 [ 2 [ 4 ] 4 [ 5 ] 5 ] 2 [ 3 ] 3 ] 1 0: Umgebung

39 P-System - Definition Ein P-System vom Typ X ist ein Konstrukt  = ( V,T, μ, w μ, R μ, f), - V/T Symbole/Terminalsymbole; - μ Membranstruktur von  ; üblicherweise werden die Membranen mit 1,...,n bezeichnet; die äußerste Membrane wird mit 1 markiert (Hautmembran); - w μ ( = (w 0,w 1,...,w n ) ) ordnet der Umgebung (w 0 ) und jeder Region innerhalb einer Membran i, 1 ≤ i ≤ n, eine initiale Multimenge über V zu (aus, üblicherweise sind aber alle w i, i>0, nur aus ); - R μ ( = (R 1,...,R n ) ) ordnet jeder Membran i, 1 ≤ i ≤ n, von μ Regeln vom Typ X zu; - f Output-Membran, 1 ≤ f ≤ n.

40 P-System - Regeln Eine Regel aus R i in einem P-System ist von der Gestalt P a,Q a [ P i,Q i | x [ u → v [ y. Dabei werden die Multimengen x in der Region außerhalb der Membran i und u innerhalb der Membran i durch die Multimengen v bzw. y ersetzt („rewriting“), vorausgesetzt, alle in den Mengen P a und P i enthaltenen Multisets kommen in der Region außerhalb bzw. innerhalb der Membran i vor und keiner der in den Mengen Q a und Q i enthaltenen Multisets kommt in der Region außerhalb bzw. innerhalb der Membran i vor.

41 ist eines der gebräuchlichsten Merkmale vieler Modelle von P-Systemen, die bisher eingeführt wurden. Eine universelle Uhr, welche die parallele Anwendung der Regeln steuert, erscheint unrealistisch, ist aber für viele interessante theoretische Resultat wichtig, speziell wenn es darum geht, Universalität zu beweisen und (NP-) harte Probleme zu lösen. Im maximal parallelen Ableitungsmodus (max) wird eine Multimenge von Regeln derart ausgewählt, dass nach der Zuweisung entsprechender Objekte zu den (Kopien der) Regeln nicht genug Objekte mehr vorhanden sind, um noch die Anwendung einer zusätzlichen Regel zu erlauben. maximal paralleler Ableitungsmodus

42 Im minimal parallelen Ableitungsmodus (min) wird eine Multimenge von Regeln derart ausgewählt, dass nach der Zuweisung entsprechender Objekte zu den Regeln nicht genug Objekte mehr vorhanden sind, um noch die Anwendung einer zusätzlichen Regel aus einer mit einer Membran assoziierten Regelmenge R i, aus der noch keine Regel verwendet wurde, zu erlauben. minimal paralleler Ableitungsmodus

43 Sequentieller und asynchroner Ableitungsmodus Biologische Prozesse in lebenden Organismen geschehen zwar parallel, aber nicht synchronisiert durch eine universelle Uhr. Viele Prozesse involvieren verschiedene Objekte gleichzeitig, aber die Prozesse selbst sind nicht synchronisiert. Im sequentiellen Ableitungsmodus (seq) wird in jedem Ableitungsschritt genau eine Regel angewendet. Im asynchronen Ableitungsmodus (asyn) wird in jedem Ableitungsschritt eine beliebige Anzahl von Regeln parallel angewendet.

44 P-System - Ableitung Eine Ableitung im P system  geschieht folgendermaßen: Wir starten mit w i in der Umgebung und den Regionen innerhalb der Membranen. In jedem Ableitungsschritt werden die den Membranen zugeordneten Regeln gemäß dem Ableitungsmodus non- deterministisch ausgewählt und (parallel) angewendet.

45 P-System - Halten Wir leiten im P system  so lange ab bis eine bestimmte Haltebedingung erfüllt ist: - totales Halten (H): im gesamten System ist keine Regel mehr anwendbar; - partielles Halten (h): aus einer Menge R i ist keine Regel mehr anwendbar; - adultes Halten (a): keine Konfigurationsänderung mehr; - Halten mit Endzustand (s).

46 P-System – erzeugte Sprache Alle terminalen Multimengen aus, die am Ende einer Ableitung in Membran f erscheinen, tragen zu der von  erzeugten Menge von Multimengen Ps(  ) bei. Die Familie der von X-P-Systemen (mit Membranstruktur μ) im Ableitungsmodus m (seq, asyn, max, min) mit der Haltebedingung Y (H,h,a,s) erzeugten Mengen wird mit Ps((p,f)X-P,m,Y) bezeichnet. Sind alle Kontextbedingungen in einem X-P-System leer, dann bezeichnen wir die entsprechenden Mengenfamilien mit Ps(X-P,m,Y); sind nur erlaubte (“permitting contexts”) bzw. nur verbotene Kontextbedingungen vorhanden (“forbidding contexts”), d.h., alle Q-Mengen bzw. alle P- Mengen leer, dann bezeichnen wir die entsprechenden Mengenfamilien mit Ps(pX-P,m,Y) bzw. Ps(fX-P,m,Y).

47 P-Systeme – minimal paralleler Ableitungsmodus und partielles Halten Satz. P-Systeme können in einer beliebigen Membranstruktur im sequentiellen, asynchronen und minimal parallelen Ableitungsmodus mit partiellem Halten nur Mengen von Multimengen erzeugen, die auch von kontextfreien Matrixgrammatiken erzeugten werden, d.h., Ps(X-P,{seq,asyn,min},h) = Ps(CF-MAT) = Ps(L(CF-MAT)). R. Freund, M. Oswald: P systems with partial halting

48 P-Systeme mit Kommunikationsregeln Kommunikationsregeln (communication rules) Antiport-Regeln der Gestalt (u,out;v,in) entsprechen Regeln v [ u → u[ v. Symport-Regeln der Gestalt (u,out) bzw. (v,in)) entsprechen Regeln [ u → u[ bzw. v [ → [ v.

49 P-Systeme mit Kommunikationsregeln Satz. P-Systeme mit Kommunikationsregeln (Antiport- und Symport-Regeln) können in einer beliebigen Membranstruktur im sequentiellen Ableitungsmodus nur Mengen von Multimengen erzeugen, die auch von Matrixgrammatiken erzeugt werden, d.h., Ps(AntiSym-P( [ 1 ] 1 ),seq,{H,h}) = Ps(AntiSym-P,seq,{H,h}) = Ps(CF-MAT) = Ps(L(CF-MAT)). Satz. P-Systeme mit Antiport- und Symport-Regeln können in nur einer Membran im maximal parallelen Ableitungsmodus jede rekursiv aufzählbare Menge von Vektoren nicht-negativer ganzer Zahlen erzeugen, d.h., Ps(AntiSym-P( [ 1 ] 1 ),max,{H,h}) = Ps(L(ARB)).

50 P-Systeme für Wortsprachen Satz. Jede rekursiv aufzählbare Sprache L kann von einem P-System mit verbotenem Kontext und kontextfreien Produktionen in einer Membranstruktur von zwei Membranen im sequentiellen Ableitungsmodus erzeugt werden, d.h. (f = forbidden context), L(fCF-P( [ 1 [ 2 ] 2 ] 1,seq,H) ) = L(ARB). R. Freund: P systems working in the sequential mode on Arrays and strings. DLT 2004, Dez. 2004, Auckland.

51 P-Systeme ohne verbotenen Kontext Satz. Ohne verbotenen Kontext können P-Systeme mit kontextfreien Produktionen (in einer linearen Membranstruktur von drei Membranen) im sequentiellen Ableitungsmodus nur Sprachen erzeugen, die von Matrixgrammatiken erzeugt werden, d.h., L((p)CF-P( [ 1 [ 2 [ 3 ] 3 ] 2 ] 1 ),seq,H ) = L(CF-MAT). Satz. Ohne Kontextbedingungen können P-Systeme mit kontextfreien Produktionen (in einer linearen Membranstruktur von drei Membranen) im maximal parallelen Ableitungsmodus jede rekursiv aufzählbare Sprache erzeugen, d.h., L(CF-P( [ 1 [ 2 [ 3 ] 3 ] 2 ] 1 ),max,H) = L(ARB).

52 P-Systeme mit Splicing-Regeln Satz. Jede rekursiv aufzählbare Sprache L kann von einem P-System mit Splicing-Regeln mit nur einer Membran und sogar ohne Kontextbedingungen in den Regeln im sequentiellen Ableitungsmodus, erzeugt werden, d.h., L(splicingP( [ 1 ] 1 ),seq,{H,h})= L(ARB). | Hautmembran | Axiome (unbeschränkt) Axiome (unbeschränkt) außen innen | Splicing-Regeln |

53 Varianten von P-Systemen u.A. verwendet für die Implementierung paralleler Algorithmen (üblicherweise linear in der Zeit), für die Lösung (NP-)harter Probleme ► Erzeugung/Auflösung von Membranen ► tissue(-like) P systems beliebige Graphstruktur für die Verbindung zwischen Zellen (nicht notwendigerweise ein Baum wie bei P-Systemen); z.B., zur Beschreibung neuraler Netzwerke ►...

54 Ausblick ► Untersuchung der Komplexität verschiedener Modelle von P-Systemen, vor allem im Hinblick auf die Grenze zwischen Universalität und Nicht-Universalität; ► (parallele) Algorithmen für die Lösung (NP-)harter Probleme basierend auf P-Systemen; ► Untersuchung des Potentials verschiedener Modelle von P-Systemen zur Beschreibung biologischer Prozesse; ►... ► Implementierung verschiedener Modelle von P-Systemen “in silicio” und/oder “in vitro”;

55 DANKE FÜR DIE AUFMERKSAMKEIT !


Herunterladen ppt "Fakultät für Informatik Technische Universität Wien Rudolf FREUND Rechnen mit Molekülen"

Ähnliche Präsentationen


Google-Anzeigen