Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Konstruktion des Bildes

Ähnliche Präsentationen


Präsentation zum Thema: "Konstruktion des Bildes"—  Präsentation transkript:

1 Konstruktion des Bildes
Prinzip der optischen Wahrnehmung Gehirn, Konstruktion des Bildes Nervenimpuls Auge Geometrische Optik

2 Wird ein Objekt beleuchtet, so können sich mehrere Vorgänge abspielen
Einstrahlintensität IR REFLEXION Reflektierter Strahl IA ABSORPTION Absorbierter Strahl IT TRANSMISSION Durchgelassener Strahl (Transmittierter Strahl) Geometrische Optik

3 Lambert-Gesetz I = I0 -IR Eindringende Strahlungsintensität
Einstrahlintensität IR REFLEXION Reflektierter Strahl IA ABSORPTION Absorbierter Strahl IT TRANSMISSION Durchgelassener Strahl (Transmittierter Strahl) I = I0 -IR Eindringende Strahlungsintensität IA = I - IT Absorbierte Intensität IT Durchgelassene Intensität (Transmittierter Strahl) Strahlungsweg d In das Material tritt ein die Lambert-Gesetz [Länge]-1: Linearer Extinktionskoeffizient d [Länge] : Strahlungsweg (Lichtweg) Geometrische Optik

4 Das snelliussche Gesetz
Brechung 4 Das snelliussche Gesetz (Brechungsgesetz) a1 a2 Medium 1 n1 Medium 2 n2 n heisst Brechungsindex und ist eine Stoffkonstante des Mediums. Diese Konstante hängt ab von der Temperatur und von der Wellenlänge des Lichtes (später mehr hierzu) C0 = Lichtgeschwindigkeit im Vakuum = ~ 3*105 Km / s C = Lichtgeschwindigkeit im Medium Geometrische Optik

5 a2 < Grenzwinkel der a2 > Grenzwinkel der
n1 < n2 Man sagt: Medium 1 ist optisch dünn und Medium 2 ist optisch dicht a1 a2 Medium 1 n1 Medium 2 n2 a1 = 90° a2 a2 a1 a2 = Grenzwinkel der TOTALREFLEXION => a1 = 90° n1 * Sin 90° = n2 * Sin a2 BRECHUNG a2 < Grenzwinkel der Totalreflexion n1 * Sin a1 = n2 * Sin a2 TOTALREFLEXION a2 > Grenzwinkel der Totalreflexion a2 = a1 n1= n2 * Sin a2 Geometrische Optik

6 Praktische Bedeutung:
TOTALREFLEXION Trifft Licht aus einem optisch dichten Medium auf ein optisch dünneres Medium, so wird es in das dünnere Medium gebrochen, sofern der Einfallswinkel kleiner als der Grenzwinkel der Totalreflexion ist. Bei einem Einfallswinkel, der grösser als der Grenzwinkel der Totalreflexion ist, wird der Lichtstrahl in das optisch dichtere Medium reflektiert. Die Grenzfläche wirkt dann wie ein Spiegel. n = n2 sin a n1 < n2 Optisch dünnes Medium Optisch dichtes Medium a2 = Grenzwinkel der Totalreflexion Praktische Bedeutung: Ist mir n2 bekannt, so muss ich lediglich a2 messen, um n1 zu bestimmen. Das ist das Messprinzip des Refraktometers Geometrische Optik

7 TOTALREFLEXION Geometrische Optik
Quelle: Dorn.Bader, Physik, Schroedel, 2006 Geometrische Optik

8 Die Abhängigkeit des Brechungsindexes von der Lichtfarbe
Beobachtung: Weisses Licht wird beim Durchgang durch ein Prisma in farbiges Licht aufgespalten. Dieses farbige Licht lässt sich durch eine Linse wieder zu weisses Licht vereinigen. Deutung: Weisses Licht ist zusammengesetzt aus „farbigen Lichtkomponenten“. Je nach Farbe haben diese farbige Lichtkomponenten einen anderen Brechungsindex. Die Abhängigkeit des Brechungsindexes von der Lichtfarbe nennt man Dispersion. UV/VIS-Spektroskopie

9 UV/VIS-Spektroskopie
Aus den verschiedensten Experimenten mit Licht hat sich immer mehr die Sicht- weise durchgesetzt, dass man Licht als aus Lichtteilchen (Photonen) bestehend, auffassen kann. Viele Experimente jedoch lassen sich nur verstehen, wenn man dem Licht auch eine Wellennatur zuschreibt. Einstein schloss aus diesem merkwürdigen Verhalten des Lichtes, dass man jedem Photon, welches über einem Impuls p = m v (m = Masse, v= Geschwindigkeit) verfügt, eine Wellenlänge l zuordnen sollte. De-Broigle erkannte, dass dieser Welle-Teilchen-Dualismus sich überall im Mikrokosmos manifestiert, also für alle Teilchen gilt. => De-Broigle De Broigle Beziehung (Welle-Teilchen-Dualismus): Teilchen (Photonen) Welle (Lichtquanten) h = 6.63 * J s Planck`sche Konstante UV/VIS-Spektroskopie

10 Geometrische Optik NATURE | VOL 401 | 14 OCTOBER 1999 |

11 UV/VIS-Spektroskopie
Bei Lichtwellen handelt es sich um elektromagnetische Wellen. Diese Wellen transportieren elektromagnetische Energie in Form eines oszillierenden magnetischen und elektrischen Feldes. => Elektromagnetische Strahlung UV/VIS-Spektroskopie

12 UV/VIS-Spektroskopie
Weitere Beziehungen: Frequenz: c = Lichtgeschwindigkeit , [m/s] Ein Lichtquant besitzt die Energie: Wellenzahl: meist in [cm-1] angegeben. Vorsicht, immer auf die Einheit achten. Somit ist auch: merke, Hier aber aufgepasst, die Längeneinheiten der Wellenzahl und der Licht- geschwindigkeit müssen übereinstimmen damit sie sich wegkürzen. Ist Beispielweise die Wellenzahl in [cm-1] gegeben, so muss die Lichtgeschwindigkeit in den Einheiten [cm/s] eingesetzt werden!!! Umrechnen der Wellenlänge von cm in nm: UV/VIS-Spektroskopie

13 t [s] Wellenlänge der grünen Welle: 30 cm = 5*l => l = 6 cm
Ausbreitungsgeschwindigkeit der grünen Welle: In 0.15 s hat die Welle einen weg S = 5*l zurückgelegt Die Geschwindigkeit ist somit: C = = 200 cm/s t [s] 0.15 Start Ende Frequenz n der grünen Welle. Hierunter versteht man die Anzahl Wellenlängen die in einer gewissen Zeit durch einen Punkt gehen. In der Zeit t gehen durch einen Punkt = n Wellenlängen. Die gesuchte Frequenz ist somit: also = s bzw = s-1 Geometrische Optik

14 t [s] Wellenlänge der roten Welle: 30 cm = 1.25*l => l = 24 cm
Ausbreitungsgeschwindigkeit der roten Welle: In 0.15 s hat die Welle einen weg S = 1.25*l zurückgelegt Die Geschwindigkeit ist somit: C = = 200 cm/s t [s] 0.15 Start Ende Frequenz n der roten Welle. Hierunter versteht man die Anzahl Wellenlängen die in einer gewissen Zeit durch einen Punkt gehen. In der Zeit t gehen durch einen Punkt = n Wellenlängen. Die gesuchte Frequenz ist somit: also = 8.33 s bzw = 8.33 s-1 Geometrische Optik

15 UV/VIS-Spektroskopie
Spektrum elektromagnetischer Strahlung Energie Energie UV/VIS-Spektroskopie

16 UV/VIS-Spektroskopie

17 UV/VIS-Spektroskopie
Absorption Energie EAngeregt EGrundzustand ABSORPTION DE= EAngeregt-EGrundzustand = h n E = h n UV/VIS-Spektroskopie

18 UV/VIS-Spektroskopie
Energie Emission EAngeregt EGrundzustand EMISSION E = h n DE= EAngeregt-EGrundzustand = h n UV/VIS-Spektroskopie

19 E6 E5 E4 E3 E2 E1 Geometrische Optik


Herunterladen ppt "Konstruktion des Bildes"

Ähnliche Präsentationen


Google-Anzeigen