Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
1
© Prof. Dr. Remo Ianniello
Röntgenstrahlen Röntgenstrahlen © Prof. Dr. Remo Ianniello
2
© Prof. Dr. Remo Ianniello
Inhalt der Vorlesung Erzeugung: Die Röntgenröhre Die Bremsstrahlung Die Charakteristische Strahlung Bragg-Reflexion Moseley-Gesetz B C 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello
3
© Prof. Dr. Remo Ianniello
Röntgenstrahlen © Prof. Dr. Remo Ianniello
4
© Prof. Dr. Remo Ianniello
Röntgenröhre Röntgenstrahlen © Prof. Dr. Remo Ianniello
5
© Prof. Dr. Remo Ianniello
Röntgenstrahlen © Prof. Dr. Remo Ianniello
6
Funktions-Prinzip 𝑅 ∞ B C Röntgenröhre
Eine Kathode in der Röhre „schießt“ hochenergetische Elektronen auf die Anode. Merkhilfe: Kathode = Katapult Anode = Annahme der Elektronen B C Weil die Anode durch den Beschuss sehr warm wird, besteht sie aus einem Metall mit hohem Schmelzpunkt, wie z.B. aus Wolfram (TS = 3.950°C) oder Molybdän (TS = 3.160°C). Die Anode enthält feine Kanäle, durch die laufend Kühlwasser fließt. 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
7
Funktions-Prinzip 𝑅 ∞ B C Weg der Elektronen
Ein Heizfaden erhitzt die Kathode. Die Wärme lässt die Elektronen aus dem Katodenkopf austreten Zwischen Kathode und Anode liegt eine Spannung von bis zu 300 kV an. B C 𝑅 ∞ Diese Spannung „zieht“ die thermisch freigesetzten Elektronen (negativ) zur Anode (positiv). Dabei werden die Elektronen immer schneller. Sie prallen mit einem Bruchteil der Lichtgeschwindigkeit auf den „Brennfleck“ oder „Fokus“ auf. Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
8
Die Röntgenröhre Wie heißt der Minuspol, von dem aus die Elektronen austreten? Kathode. Mit welcher Geschwindigkeit treffen die Elek- tronen ungefähr auf die Anode auf? Mit ½ c0 . Was (im Target-Material) bremst die Elektronen schlagartig ab, die positiv geladenen Atomkerne oder die negativ geladenen Elektronen der Atomhülle? Beide. Wie viel % der kinetischen Elektronen-Energie wird in Röntgenstrahlung umgewandelt? 1% Was passiert mit dem Rest? Wird zu Wärme. Wovon hängt der Grad ab, mit dem Röntgenstrahlen Materie durchdringen? Von der Dichte der Materie. B C 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
9
Energie Reihenfolge der Energie- Umwandlungen in der Röntgenröhre: Energieformel 𝐸=𝑚𝑔ℎ B Elektrische Energie zwischen Anode und Kathode … wird in kinetische Energie der Elektronen umgewandelt. Beim Aufprall geben die Elektronen diese Energie ab, indem sie Röntgen- Photonen erzeugen. ? 𝐸=ℎ𝑓 C 𝐸=𝑒𝑈𝐵 𝐸= 1 2 𝐽 2 𝑅 ∞ 𝐸= 1 2 𝑚 𝑣 2 𝐸= 1 2 𝑐 𝑥 2 Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
10
Bremsstrahlung Röntgenstrahlen © Prof. Dr. Remo Ianniello
11
Bremsstrahlung 𝑅 ∞ B C Bremsstrahlung
Röntgenstrahlen entstehen zum anderen auch dadurch, dass die Elektronen beim Eindringen in das Target extrem stark abgebremst werden. Deswegen heißt diese Strahlung Bremsstrahlung. B C 𝑅 ∞ Elektronen, die nah am Kern gebremst werden, verlieren mehr Energie, als kernferne Elektronen. Sie erzeugen daher auch Photonen mit höherer Frequenz / mehr Energie. Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
12
Bremsstrahlung + + + + + + 𝑅 ∞ B C Röntgenstrahlen
© Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
13
Bremsstrahlung Wird eine elektrische Ladung positiv oder negativ beschleunigt, d.h. ändert sich ihr Geschwindigkeits-Betrag oder -Richtung, so entsteht elektromagnetische Strahlung. Die Energie dieser Strahlung ist umso höher, je stärker die Beschleunigung ist. Wenn viele Ladungen unterschiedlich stark abgebremst werden, haben die Photonen alle dieselbe / verschiedene Energien. Die negativ geladenen Elektronen der Kathode Welche Ladung ? Woher kommt sie? B Beim Aufprall auf die Anode ist die Beschleunigung negativ. In der Anode ist die Beschleunigung positiv / negativ / null C Welche Strahlung speziell ? Bremsstrahlung 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
14
Bremsstrahlung Sortiert man die Photonen nach der Energie und trägt ihre Häufigkeit auf, ergibt sich ein kontinuierliches Spektrum. Es zeigt wenige Photonen mit der gesamten Energie der einfallenden Elektronen. B C Sie entstehen durch die Abbremsung von Elektronen, die auf den Kern geprallt sind (“Punktlandung” im schwarzen Kreis). 𝑅 ∞ Hier wird in einem einzigen Stoß die gesamte Energie übertragen. Die meisten Photonen haben weniger Energie, weil die meisten Elektronen ihre Energie auf mehrere Kollisionen (in kernfernen Ringen) verteilen. Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
15
Bremsstrahlung Das tatsächliche Spektrum der Bremsstrahlung sieht etwas anders aus, weil energieschwache Photonen herausgefiltert werden. B Diese energieschwachen Photonen schaffen es nicht, die Anode zu verlassen. C Sie werden bereits in der Anode absorbiert. 𝑅 ∞ Auch können Elektronen einer bestimmten Energie durch einen Filter abgefangen werden. Das ist beim Röntgen gesünder, als wenn sie im menschlichen Körper absorbiert würden, anstatt ihn zu durchdringen. Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
16
Bremsstrahlung Außer für die maximale Energie der Bremstrahlung bestimmt die Elektrodenspannung UB auch die Anzahl der erzeugten Photonen. Je geringer UB, desto geringer Eel = UBe, geringer Ekin der Elektronen, weniger Energie steht zur Erzeugung von Photonen bereit. B C 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
17
Grenzwerte 𝑅 ∞ B C 𝑓𝑚𝑎𝑥= 𝐸𝑃ℎ ℎ = 𝑒∙ 𝑈 𝐵 ℎ 𝑚𝑖𝑛= 𝑐 𝑓𝑚𝑎𝑥 = 𝑐 ℎ 𝑒∙ 𝑈 𝐵
In der Anodenoberfäche kann die kinetische Energie der Elektronen E = eUB maximal in ein einziges Röntgenquant der Energie EF = hfmax umgewandelt werden. B C 𝑅 ∞ Daraus ergibt sich die Grenzfrequenz: und damit für die Grenzwellenlänge: 𝑓𝑚𝑎𝑥= 𝐸𝑃ℎ ℎ = 𝑒∙ 𝑈 𝐵 ℎ 𝑚𝑖𝑛= 𝑐 𝑓𝑚𝑎𝑥 = 𝑐 ℎ 𝑒∙ 𝑈 𝐵 Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
18
Grenzwerte Maximale Frequenz Wie groß ist die maximale Frequenz der Strahlung einer Röntgenröhre, die mit UB = 20 kV betrieben wird? B C Die maximale Frequenz ergibt sich, wenn man annimmt, dass die gesamte kinetische Energie eines Elektrons beim Abbremsen vollständig auf ein Röntgen-Photon überträgt. Bei einer Beschleunigung mit 20 kV beträgt die maximale Frequenz der abgestrahlten Röntgenstrahlung 4,81018 Hz. Das entspricht einer Wellenlänge von 63 pm. 𝑅 ∞ Röntgenröhre mit Drehanode Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
19
© Prof. Dr. Remo Ianniello
Anwendung Röntgenstrahlen © Prof. Dr. Remo Ianniello
20
Bremsstrahlung Wie klein ist die kleinste (Grenz-) Wellenlänge, die mit einer Röhrenspannung von 30 kV erzeugt werden kann? l = hc / eU = 41,32 pm. Wird die mittlere Frequenz der entstandenen Röntgenstrahlen kleiner, wenn man die Spannung zwischen Anode und Katode erhöht? Zu höheren Werten. Wie groß ist die Energie von drei Elektronen, die mit einer Spannung von 220 V beschleunigt werden? 3 e mal 220 V = 660 eV. Warum fallen die Elektronen an der Katode nicht gleich wieder ins Katodenmetall zurück? Weil sie vom elektrischen Feld zur Anode hin gezogen werden. B C 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
21
Charakteristische Strahlung
Röntgenstrahlen © Prof. Dr. Remo Ianniello
22
© Prof. Dr. Remo Ianniello
Atommodell Die Elektronenhülle der Atome stellt man sich als eine zwiebelförmige Hülle vor. B Die Elektronen können darin nur bestimmte Energien annehmen. C Die unterschiedlichen Energie-Niveaus werden auch als „Schalen“ bezeichnet. Der dänische Physiker Niels Bohr schlug dieses Schalen-Modell der Atomhülle vor. Man spricht deshalb vom Bohr'schen Atommodell. 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello
23
Charakteristische Strahlung
Die Erzeugung charakteristischer Röntgenstrahlung ist eine Folge-Erscheinung. Sie entsteht erst nachdem ein Elektron entfernt wurde. B C 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
24
Charakteristische Strahlung
Das charakteristische Spektrum ist dem optischen Spektrum ähnlich. Es jedoch durch Übergänge innerer Elektronen im Atom zustande, während das optische Spektrum durch Übergänge äußerer Elektronen entsteht. B C 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
25
Charakteristische Strahlung
Es gibt verschiedene Sprung-Optionen. Je nachdem, von welcher Bahn ein Elektron in das Loch springt, wird Strahlung mit mehr oder weniger Energie frei. Diese Energiedifferenz liegt typischerweise im Bereich von 1 bis 100 keV. B C 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
26
Charakteristische Strahlung
Dieselbe Option, z.B. ein Sprung von der L in die K-Schale, würde bei verschiedenen Elementen verschiedene Strahlungsenergien hervorrufen. Atome mit großer Ordnungszahl Z / Gewicht Z / Bahnzahl Z haben viele Protonen und ziehen ein Elektron stärker an. Hier ist die Energiedifferenz zwischen den Bahnen kleiner als / gleich wie / größer als bei Atomen mit kleinem Z. Da die Energiedifferenzen anders sind, ist die enstehende Strahlung elementspezifisch / zeitabhängig / unbekannt. Weil jedes Element „seine“ typischen Energiewerte aussendet, heißt diese Art der Röntgenstrahlung... B C 𝑅 ∞ „charakteristisch“ Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
27
© Prof. Dr. Remo Ianniello
Röntgenstrahlen © Prof. Dr. Remo Ianniello
28
Charakteristische Strahlung
Aus dem Sprung von der L- zur K-Schale ent steht die K-α-Strahlung, von der M- zur K-Schale resultiert die K-β-Strahlung. Der erste Buchstabe (K, L) bezeichnet die „Landebahn“, Aus dem griechischen Buchstabe () erkennt man die „Startbahn“ des nachrückenden Elektrons. B C 𝑅 ∞ Frage: Wie entsteht demzufolge die K--Strahlung? Und wie die L--Strahlung? Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
29
Röntgenstrahlung 𝑅 ∞ B C K K
Beschriften Sie die Achsen und die Pfeile im Diagramm. B Wellenlänge Intensität I K K UB Bremsstrahlung 5 C 4 6 2 𝑅 ∞ 3 1 Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
30
© Prof. Dr. Remo Ianniello
Röntgenstrahlen © Prof. Dr. Remo Ianniello
31
Charakter. Strahlung 𝑅 ∞ B C
Die Bezeichnung einer charakteristischen Röntgenlinie muss zwei Informationen enthalten. Welche, mit welcher Bedeutung? 1. Elektron fällt auf Ziel-Niveau (HauptQz) 1, 2, 3 … K, L, M … 2. Fallhöhe des Elektrons Index , , … In welchem Wellenlängenbereich liegt das vollständige Röntgenspektrum? Im Bereich von 10 nm bis 10 pm. B C Ist das Röntgenspektrum eher ein Linien- oder ein kontinuierliches Spektrum? Es ist eine Überlagerung aus beidem. Ist ein Röntgenbrille a la Superman möglich? 𝑅 ∞ Nein. Körper müssten Röntgenstrahlen aussenden, und Augen müssten in der Lage sein, diese kurzen Wellenlängen zu sehen. Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
32
© Prof. Dr. Remo Ianniello
Bragg- Reflexion Röntgenstrahlen © Prof. Dr. Remo Ianniello
33
Bragg-Spektrometer 𝑅 ∞ B C
Der englische Chemiker Henry Moseley ( ) untersuchte die Röntgenspektren verschiedener Anodenmaterialien. Durch seine Untersuchung wurden die chemischen Elemente in einer eindeutigen Reihenfolge aufgelistet ! Die Wellenlängen von Röntgenstrahlen sind mal kürzer als Lichtwellen. Daher lassen sich keine Gitter herstellen, die fein genug für die Beugung von Röntgenstrahlen sind. B C 𝑅 ∞ Moseley bediente sich daher eines natürlichen „Gitters“: ein Einkristall: Er hat regelmäßig angeordnete Atome. Er ist ein dreidimensionales, sehr feines Gitter. Er hat „Netz-“ oder „Gitterebenen“ an denen sich die Röntgenstrahlen beugen lassen, weil ihr Abstand voneinander ähnlich klein ist wie deren Wellenlänge. Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
34
Bragg-Spektrometer 𝑅 ∞ B C
Den Versuchsaufbau, in dem das Gitter durch ein Einkristall ersetzt ist, nennt man Braggsche Anordnung. B Moseley ließ die Röntgenstrah lung unter einem Winkel α auf die Kristalloberfläche fallen und detektierte mit einem Zählrohr die Intensität der reflektierten Strahlung im gleichen Winkel. Bei einigen Winkeln war die Intensität extrem groß, weil sich die Wellen im Kristallgitter verstärkten. C 𝑅 ∞ * Das Spektrometer ist benannt nach W. H. Bragg (1862 bis 1942) und Sohn W. L. Bragg(1890 bis 1971) Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
35
Bragg-Spektrometer 𝑅 ∞ B C
Bei der Reflexion der Strahlung an den Gitteratomen einer einzigen Ebene kommt es nur dann zur konstruktiven Überlagerung, wenn der Wegunterschied zwischen zwei verschiedenen Wegen Null (oder ein Vielfaches der Strahlungs-Wellenlänge) ist. B C Ist der Einfalls- gleich dem Reflexionswinkel, ist der Wegunterschied bei Reflexion an Atomen derselben Ebene Null. Bei der Reflexion der Strahlung an Gitteratomen zweier verschiedener Ebenen kommt es zu Wegunterschieden. Konstruktive Überlagerung ergibt sich, wenn der Weg-Unterschied ein Vielfaches der Wellenlänge ist. 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
36
Bragg-Spektrometer 𝑅 ∞ B C 𝒌=𝟐∙𝒅∙𝐬𝐢𝐧(𝝑)
Man spricht zwar von "Bragg-Reflexion", aber anders als bei einem Spiegel tritt die Reflexion nicht bei jedem Einfallswinkel auf. B Die "Bragg-Reflexion" tritt nur auf, wenn die Strahlen konstruktiv interferieren: Der Wegunterschied Δs ist: C 𝑅 ∞ ∆𝑠= 𝐴𝐵 + 𝐵𝐶 und wegen 𝐴𝐵 = 𝐵𝐶 ∆𝑠=2 𝐴𝐵 Aus geometrischen Gründen ist: 𝐴𝐵 =𝑑∙sin(𝜗) ∆𝑠=2∙𝑑∙sin(𝜗) Die Strahlen interferieren konstruktiv, wenn s ein ganzzahliges (k) Vielfaches der Wellenlänge ist: 𝒌=𝟐∙𝒅∙𝐬𝐢𝐧(𝝑) Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
37
Bragg-Spektrometer 𝑅 ∞ B C
Unter welcher Bedingung verstärken sich die Wellen der Röntgen- Strahlung in einem Kristall? Konstruktive Interferenz liegt vor, wenn der Gangunterschied benachbarter reflektierter Strahlen ein ganzes Vielfaches der Wellenlänge beträgt, d. h., wenn die Bragg’sche Bedingung erfüllt ist. B C Wie lautet die „Bragg-Bedingung“? 2dsin() = k . Welche Größe muss man kennen, um die Wellenlänge der gebeugten Strahlung zu berechnen? Den Glanz-Winkel und die Gitterkonstante d. 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
38
Bragg-Bedingung Molybdän-Anode Die Strahlung einer Röntgenröhre mit Molybdän-Anode fällt auf einen LiF-Kristall mit 2d = 4,027·10−10 m. Wie groß ist die Wellenlänge der Röntgenstrahlung, wenn der Reflex erster Ordnung unter dem Glanzwinkel Θ = 10,15° auftritt? B C 𝑅 ∞ [Hering, Physik für Ingenieure, Springer] Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
39
Bragg-Spektrometer 𝑅 ∞ B C
Moseley kannte die Gitterkonstante des Einkristalls. Er konnte daher aus den Winkeln mit maximaler Intensität die verschiedenen Frequenzen / Wellenlängen / Intensitäten berechnen, aus denen das charakteristische Spektrum bestand. B C Moseley erhielt zu jedem Anodenmaterial das entspre- chende Röntgenspektrum. Da jeder Peak im Diagramm aus einem Übergang zwischen zwei Bahnen / Stößen / Atomen resultierte, konnte Moseley an- hand der Peakzahl die Anzahl der Bahnen / Elektronen / Photonen ermitteln. 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
40
Anwendung 𝑅 ∞ B C Pulververfahren nach Debye-Scherrer.
Pulver = viele kleine Kristalle, wird zu einem Stäbchen P gepresst. Monochromatischer Röntgenstrahl R fällt auf P und wird an den willkürlich orientierten Netzebenen gebeugt. B C Nur die Netzebenen, die mit dem Primärstrahl den Glanzwinkel Θ einschließen, beu- gen die Röntgenstrahlen auf Kegelmänteln. 𝑅 ∞ Öffnungswinkel der Ringe Netzebenenabstände Kristallstruktur. Eine für die Praxis sehr wichtige Methode zur Bestimmung von Netzebenenabständen und damit zur Strukturanalyse ist das Pulververfahren nach Debye-Scherrer. Hierbei werden keine großen Einkristalle benötigt, sondern viele kleine Kristallite. Dazu wird das Material meist pulverisiert und zu einem kleinen Stäbchen gepresst. Fällt ein monochromatischer Röntgenstrahl R auf das Stäbchen P, wird die Röntgenstrahlung an den willkürlich orientierten Netzebenen der regellos verteilten Kriställchen gebeugt. Genü-gend viele Netzebenen schließen mit dem Primärstrahl einen Winkel Θ ein, der die Bragg’sche Bedingung befriedigt. Die abgebeugten Röntgenstrahlen liegen auf Kegelmänteln um den Primärstrahl und schwärzen einen Film F, der konzentrisch um das Stäbchen gelegt ist. Aus der Lage der Linien auf dem Film lassen sich die Netzebenenabstände und damit die Kristallstruktur bestimmen. [Hering, Physik für Ingenieure, Springer] Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
41
Bragg-Spektrometer 𝑅 ∞ B C NaCl-Kristall
Die Abbildung zeigt die Intensität der an einem NaCl-Kristall mit dem Netzebenenabstand 282 pm gestreuten Röntgenstrahlung in Abhängigkeit vom Streuwinkel. Bestimmen Sie mit Hilfe des Diagramms die Wellenlänge der Röntgenstrahlung berechnen Sie daraus deren Frequenz. B C 𝑅 ∞ 73,6 pm 4,11018 Hz Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
42
Bragg-Spektrometer 𝑅 ∞ B C
Kochsalz Der Abstand benachbarter Netz- ebenen in NaCl beträgt d = 0,28 nm. Unter welchen Glanzwinkeln treten die ersten drei Beugungsordnungen auf, wenn Röntgenstrahlung der Wellenlänge λ = 7,1 · 10−11 m auf einen Einkristall fällt? B C 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
43
Bragg-Spektrometer 𝑅 ∞ B C
Warum wird sichtbares Licht nicht an Kristallgittern gebeugt? Weil die Wellenlänge viel zu groß ist im Vergleich zur Gitterkonstanten. Was könnte der Vorteil des Debye-Scherrer-Verfahrens gegenüber anderen Methoden der Röntgen-Spektrometrie sein? Es ist ein billiges Verfahren, da die Herstellung von großen Einkristallen sehr teuer ist. Wie heißt der Winkel, unter dem man die Intenität erster, zweiter und weiterer Ordnungen beobachtet? Glanzwinkel Woran werden die Röntgenstrahlen im Kristall gebeugt? An den Netzebenen (Gitterebenen). B C 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
44
© Prof. Dr. Remo Ianniello
Moseley- Gesetz Röntgenstrahlen © Prof. Dr. Remo Ianniello
45
Moseley-Gesetz 𝑅 ∞ B C 𝑓~ 𝑍−1 2
Moseley erkannte 1913 einen Zusammenhang zwischen der Wellenlänge und der Ordnungszahl Z. B Die Frequenz f der beim Elektronenübergang emittierten bzw. absorbierten charakteristischen Röntgenstrahlung ist abhängig von der Ordnungszahl Z des jeweiligen Anoden- Elements und somit charakteristisch für das Element. C 𝑓~ 𝑍−1 2 𝑅 ∞ In der allgemeineren Form kann man mit dem Moseley-Gesetz auch die Wellenlängen der übrigen Linien des Röntgenspektrums bestimmen. 1 𝑛𝑚 = 1 𝑛 2 − 1 𝑚 2 𝑅 𝑍−𝑏 2 Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
46
Moseley-Gesetz 𝑅 ∞ B C 𝑍=𝑄∙ 𝑓 𝑛𝑚 +𝑏
Als Mosley die Ordnungszahl Z über der Wurzel der Frequenz f der charakteristischen Strahlung auftrug, ergab sich eine lineare Gesetzmäßigkeit: B C 𝑍=𝑄∙ 𝑓 𝑛𝑚 +𝑏 Das ist eine Geradengleichung mit der Steigung: 𝑅 ∞ ... und einem variablen y-Achsen- Schnitt b bei 7,5 oder 1. 𝑄= 𝑛 2 − 1 𝑚 2 𝑅 Rydberg-Frequenz, R =cR= 3,289841·1015 s-1 Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
47
Überblick 𝑅 ∞ B C R∞ = 10 973 731,568 527 (73) m-1 Abschirm-Konstante
K-Strahlung b= 1,0 L-Strahlung b= 7,4 Abschirm-Konstante K-Strahlung b= 1,0 L-Strahlung b= 7,4 B C Ordnungszahl Z = “Hausnummer“ im PSE Ordnungszahl Z = “Hausnummer“ im PSE 𝑅 ∞ 𝑓𝑛𝑚= 1 𝑛 2 − 1 𝑚 2 𝑅 𝑍−𝑏 2 1 𝑛𝑚 = 1 𝑛 2 − 1 𝑚 2 𝑅∞ 𝑍−𝑏 2 Haupt-Quantenzahlen, n = innere Schale m = äußere Schale Haupt-Quantenzahlen, n = innere Schale m = äußere Schale Rydberg-Frequenz, R =cR= 3,289841·1015 s-1 Rydberg-Konstante, R = 10, 974·106 1/m Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
48
Moseley-Gesetz 𝑅 ∞ B C 1 𝐾𝛼 = 1 1 2 − 1 2 2 𝑅 𝑍−𝑏 2 Ablauf
Beschleunigtes Elektron stößt ein Elektron aus innerer Schale Es entsteht ein „Loch“, ein unbesetzter Energiezustand. Ein Elektron aus höherer Schale fällt in das Loch und emittieret ein Photon. Notation Landebahn: K (n=1), L(n=2), … Startbahn: (nächste), (übernächste) … Energie der Übergänge Wie sieht die Gleichung für die folgenden Übergänge aus? B N L, Z = 52 C 1 𝐿𝛽 = − 𝑅 52−7,4 2 M K, Z = 29 𝑅 ∞ 1 𝐾𝛽 = − 𝑅 29−1 2 M L, Z = 44 1 𝐾𝛼 = − 𝑅 𝑍−𝑏 2 1 𝐿𝛼 = − 𝑅 44−7,4 2 Hier schirmen innere Elektronen die Kern- ladung um b Elementarladungen ab. Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
49
Moseley-Gesetz 𝑅 ∞ B C Mammographie
In der Mammographie (Röntgenaufnahme der Brust) wird überwiegend K-Strahlung von Molybdän eingesetzt. Berechnen Sie die Wellenlänge die Energie der Quanten die Mindestspannung in der Röntgenröhre. B C 𝑅 ∞ [Eichler/Schiewe, Physikaufgaben, A38, S.148] Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
50
Moseley-Gesetz Wird Wellenlänge der ausgesandten Röntgenstrahlung mit steigender Ordnungszahl immer größer? Nein, immer kleiner. Steigen die Frequenzen der Übergänge auf die L-Schale mit Z ? Ja. Gilt das Moseley-Gesetz auch für Lichtwellenlängen? Ja. Kann man mit dem Bragg-Spektrometer auch Glas untersuchen? Nur, wenn es einen kristallinen Aufbau hätte. Röntgenstrahlung besteht aus verschiendenen Wellenlängen. Stört das nicht die Messergebnisse der Bragg-Reflexion? Das würde in der Tat stören. Daher werden die Strahlen gefiltert. Gibt es einen Elektronenübergang, bei dem n = m ist? Nein, denn dann wären Start- und Lande-Orbit identisch. B C 𝑅 ∞ Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
51
© Prof. Dr. Remo Ianniello
Übungs-Aufgaben Röntgenstrahlen © Prof. Dr. Remo Ianniello
52
© Prof. Dr. Remo Ianniello
Energie Elektronen in Aktion Welche Geschwindigkeit in km/h haben Elektronen, die durch eine Spannung von 35 kV beschleunigt wurden? Diese Elektronen dringen in das Anodenmaterial ein und werden dort abgebremst. Ihre kinetische Energie wird dabei in Strahlungsenergie umgewandelt. Wie hoch ist die maximal entstehende Strahlungsenergie eines Elektrons? Da sehr viel Energie in sehr kurzer Zeit umgewandelt wird, ist die entstehende Strahlung sehr energiereich, und damit hochfrequent. Wie hoch ist die höchste Frequenz der entstehenden Röntgenstrahlen? Wie hoch ist die dazu gehörende Wellenlänge? Sind die anderen Wellenlängen größer oder kleiner? Röntgenstrahlen © Prof. Dr. Remo Ianniello
53
© Prof. Dr. Remo Ianniello
Energie Molybdän-Vergleich Das Diagramm rechts unterscheidet sich vom Diagramm links dadurch, dass die Kurven auf der linken Seite in einen gemeinsamen Punkt münden – obwohl beide Diagramme ein Spektrum der Brems-strahlung von Wolfram zeigen. Warum verlaufen die Kurven unterschiedlich? Die Kurve bei einer Anodenspannung von 30 kV endet bei einer Wellenlänge von 40 pm. Prüfen Sie, ob das sein kann. Röntgenstrahlen © Prof. Dr. Remo Ianniello
54
© Prof. Dr. Remo Ianniello
Grenzwerte 4 kV - Röhre Bei einer Röntgenröhre beträgt die Anodenspannung 4 kV. Welches ist die kürzeste Wellenlänge der entstehenden Röntgenbrems strahlung? x B Lösung: min = 0,31 nm C Röntgenstrahlen © Prof. Dr. Remo Ianniello
55
© Prof. Dr. Remo Ianniello
Grenzwerte 𝐸𝑒𝑙=𝑒∙𝑈𝐵 𝐸𝑃ℎ=ℎ∙𝑓𝑚𝑎𝑥 Grenz-Wellenlänge Wie groß ist die Grenz- Wellenlänge, wenn die Beschleunigungs-Spannung UB an der Anode 25 kV beträgt? x B C Gibt das Elektron bei der Wechselwirkung nur einen Teil seiner Energie ab, kommt es zur Emission von Röntgenquanten größerer, gleich großer oder kleinerer Wellenlängen? Es kommt zur Emission von Röntgenquanten größerer Wellenlänge. Diese bilden das Bremsspektrum. Röntgenstrahlen © Prof. Dr. Remo Ianniello
56
© Prof. Dr. Remo Ianniello
Grenzwerte 𝐸𝑒𝑙=𝑒∙𝑈𝐵 𝐸𝑃ℎ=ℎ∙𝑓𝑚𝑎𝑥 Maximale Energie Eine Röntgenröhre wird mit einer Spannung von 100 kV betrieben. Geben Sie die maximale Energie der Röntgenquanten und deren Wellenlänge an. x B C Röntgenstrahlen © Prof. Dr. Remo Ianniello
57
Grenzwerte Wellenlängen Welche kleinste Wellenlänge hat Röntgenstrahlung, die in einer Röhre mit 80kV erzeugt wurde? Welche Wellenlänge hat die Strahlung von Elektronen, die noch nicht bis zum Stillstand abgebremst werden? B C min = 1,5510-11 m Sie ist größer als min : 1,5510-11 m Röntgenstrahlen © Prof. Dr. Remo Ianniello © Prof. Dr. Remo Ianniello
58
© Prof. Dr. Remo Ianniello
Bragg-Spektrometer Salzkristall Röntgenstrahlung der Wellenlänge 150 pm wird an einem NaCl-Kristall mit dem Netzebenenabstand 282 pm reflektiert. Berechnen Sie die ersten drei Winkel, unter denen eine interferente Reflexion zu erwarten ist. 15°; 32°; 53° Röntgenstrahlen © Prof. Dr. Remo Ianniello
59
© Prof. Dr. Remo Ianniello
Bragg-Spektrometer Gitterkonstante Die Wellenlänge der interferent reflektierten Wellen sei = 50 pm, der Glanzwinkel , unter dem das Licht zum Interferenzmaximum 1. Ordnung gebracht werde, sei = 4,2°. Berechnen Sie aus diesen Angaben die Gitterkonstante d des Kristalls. x B C 341 pm Röntgenstrahlen © Prof. Dr. Remo Ianniello
60
© Prof. Dr. Remo Ianniello
Moseley-Gesetz Moseley-Fragen Die Ka-Strahlung eines unbekannten Elements hat die Wellenlänge = 0,335 nm. Welche Ordnungszahl hat das unbekannte Element? Ein Peak der charakteristischen Strahlung einer Niob-Anode (Nb) liegt bei der Wellenlänge = 5,85 Å. Handelt es sich dabei um eine Ka- oder eine La-Strahlung? Die Wellenlänge des Übergangs M → L beim Zirkonium beträgt = 6,1737 Å. Wie groß ist die Abschirmkonstante bL? Welche Wellenlänge hat der gleiche Übergang M → L beim Chrom? x B C Röntgenstrahlen © Prof. Dr. Remo Ianniello
61
© Prof. Dr. Remo Ianniello
Moseley-Gesetz Target Die Kα-Linie des Target-Metalls hat die Wellenlänge 0,844 nm. Berechnen Sie die Kernladungszahl des Target-Materials. Wie entstehen die K-Linien im Röntgenspektrum eines Elements? Weshalb kann die Kα-Linie erst beobachtet werden, wenn zur Anregung die gesamte Ionisationsenergie eines Elektrons der K-Schale zur Verfügung steht? Röntgenstrahlen © Prof. Dr. Remo Ianniello
62
© Prof. Dr. Remo Ianniello
Moseley-Gesetz Molybdän Bei den dargestellten Emissions- maxima handelt es sich um die Ka- und die Kb -Linie von Molybdän. Ordnen Sie f1 und f2 den Hauptquantenzahlen zu und erläutern Sie dazu die Entstehung der Intensitäten. Berechnen Sie aus den Angaben die Wellenlänge der La-Linie. x B C Röntgenstrahlen © Prof. Dr. Remo Ianniello
63
© Prof. Dr. Remo Ianniello
Moseley-Gesetz 4 kV-Anode Bei einer Röntgenröhre betrage die Anodenspannung 4 kV. Bis zu welcher Kernladungszahl können in dieser Röhre Elemente zum Aussenden der Röntgen-K-Linien angeregt werden? Z 18 Röntgenstrahlen © Prof. Dr. Remo Ianniello
64
© Prof. Dr. Remo Ianniello
Moseley-Gesetz Wolframs K-alpha Die K-Linie von Wolfram hat eine Wellenlänge von = 2,2910-11 m. Berechnen Sie daraus die Kernladungszahl Z. (b = -1) Welche Spannung ist zur Anregung dieser Linie in einer Röntgenröhre erforderlich? [Eichler/Schiewe, Physikaufgaben, A39, S.148] Röntgenstrahlen © Prof. Dr. Remo Ianniello
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.