Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
Veröffentlicht von:Jannike Muehlhausen Geändert vor über 11 Jahren
1
Röntgenstrahlen Erzeugung in Röntgenröhren
2
Inhalt Aufbau einer Röntgenröhre Erzeugung von Röntgenstrahlung:
Bremsstrahlung Charakteristische Strahlung Berechnung der Wellenlängen
3
Frequenzbereiche der Oszillatoren: Röntgenstrahlung
Technische Schwingkreise Molekül-schwingungen Valenz Elektronen 380 nm Violett 7,9 1014Hz 780 nm rot 3,8 1014Hz Innere Orbitale Kern-reaktionen
4
Aufbau einer Röntgenröhre
Heizstrom 4 A Röhrenspannung 45 kV Röhrenstrom 30 mA Brems-strahlung Nach ca s: Charakteristische Strahlung Röhrenfenster aus 2,5 mm Al zur Durchleuchtung in Medizin und Technik oder aus 0,4 mm Beryllium zur Beugung an Kristallen
5
Emission einer Röntgenröhre
Bremsstrahlung, abhängig von der Spannung zwischen Kathode und Anode Charakteristische Strahlung, abhängig von der Spannung zwischen Kathode und Anode und vom Material der Anode
6
Beispiel für den Gebrauch der Einheit Elektronenvolt
50 keV ist die Energie eines Elektrons, das durch eine Spannung von 50 kV beschleunigt wurde. (Diese Einheit ist „handlicher“ als die Angabe von J) 50 kV Beim vollständigen Abbremsen des Elektrons an der Anode wird diese Energie in „Bremsstrahlung“ verwandelt
7
Umrechnung der Beschleunigungs-Spannung in V zu Wellenlänge in nm
Einheit 1eV Energie-erhaltung, mit 1Å Wellenlänge λ in Å, (= 0,1nm), U in Kilovolt Bei Beschleunigungsspannung 124 kV wird Strahlung mit λ = 0,1 Å = 0,01 nm emittiert (liegt im Röntgen Bereich des Spektrums)
8
Die Bremsstrahlung Beim Aufprall auf die Anode wird das Elektron abgebremst: Die zeitliche Änderung des Elektronenstroms induziert ein zeitlich veränderliches magnetisches Feld Dadurch wird ein elektrisches Wirbelfeld induziert Die sich zeitlich ändernden Felder werden mit Lichtgeschwindigkeit abgestrahlt
9
Ein schwingendes magnetisches Felds erzeugt ein schwingendes elektrisches Feld
10
Charakteristische Strahlung
Atomare Anregung durch Ionisation auf einer inneren Schale Quelle für Zahlenwerte:
11
Fenster bei Ruf der NIST Datenbank für Wolfram, z. B.
12
Fenster nach „Get Transition“
13
Strahlungsemission bei Ionisation größerer Atome durch Stoß in der innersten Schale
λ ~ 1/Z2 32 21 43 31 Bei Übergängen auf inneren Schalen liegen die Frequenzen im Röntgen-Bereich Die Zahlen stehen für die am Übergang beteiligten Nummern der Schalen (n, m)
14
Spektrum einer Röntgenröhre mit Wolfram Anode
Bremsspektrum und charakteristische Strahlung einer W-Anode bei 160 kV Betriebsspannung (z. B. für Grobstrukturuntersuchung). Quelle: Pohl, Optik und Atomphysik
15
Emissionslinien einer Röhre mit Cu-Anode
W Anode (Z=74) 2,5GHz Mikro-wellenherd 50 Hz (Netz) 780 nm rot 3,8 1014Hz 380 nm Violett 7,9 1014Hz 0,02 nm Cu Kα
16
Zusammenfassung Aufbau einer Röntgenröhre: Zwischen einer Glühkathode und der Anode liegt Hochspannung ( kV) Zwei voneinander unabhängige Prozesse verursachen Röntgenstrahlung: Auf der Anode abgebremste Elektronen senden Bremsstrahlung aus Bei Beschleunigung mit Spannung U in [kV] folgt die Wellenlänge λ in [ Å ] λ = 12,4 / U [ Ǻ] (1 Å = 0,1 nm) Die angeregten Atome der Anode emittieren zusätzlich charakteristische Strahlung
17
finis Heizstrom 4 A Röhrenspannung 45 kV Röhrenstrom 30 mA Emission der Bremsstrahlung bei Ankunft des Elektrons, verzögert folgt die Emission der charakteristischen Strahlung
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.