Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Formalismus der Quantenmechanik Messpostulat, Quantenkryptographie

Ähnliche Präsentationen


Präsentation zum Thema: "Formalismus der Quantenmechanik Messpostulat, Quantenkryptographie"—  Präsentation transkript:

1 Formalismus der Quantenmechanik Messpostulat, Quantenkryptographie
WS 2015 / 16 – Ulrich Hohenester Vorlesung Formalismus der Quantenmechanik Messpostulat, Quantenkryptographie

2 Hilbertraum Der Hilbertraum ist der Raum aller möglicher Zustände H
beliebiger Zustand (Wellenfunktion) Y Ein Vektor a kann in einem Koordinatensystem dargestellt werden, (a1,a2,a3). Analog dazu kann ein Zustand in einer Basis dargestellt werden, z.B. Orts- oder Impulsbasis

3 Zustände und Basis Gegeben sei eine vollständige Basis, in der jeder Zustand entwickelt werden kann Jeder Zustand des Hilbertraums kann in dieser Basis entwickelt werden Beispiel: Impulsbasis

4 Operatoren im Hilbertraum
Ein Operator A verschiebt einen Zustand im Hilbertraum H Beispiel: Zeitentwicklung der Schrödingergleichung

5 Finite Differenzen Betrachten wir eine Wellenfunktion, die nur an bestimmten Orten gegeben ist

6 Operatoren Impuls- und Hamiltonoperatoren können als Matrizen angeschrieben werden Anwenden der Operatoren auf Wellenfunktion entspricht Matrix-Vektorprodukt Messoperatoren in der Quantenmechanik sind hermitesche Matrizen

7 Eigenvektoren und Eigenwerte
Einige Eigenschaften für hermitesche Matrizen Alle Eigenwerte sind reell Alle Eigenvektoren sind normiert Die Eigenvektoren bilden eine vollständige Basis, das heißt, dass jeder beliebige Vektor als Linearkombination der Eigenvektoren dargestellt werden kann

8 John von Neumann, Messvorschrift 1932

9 von Neumannsches Messpostulat
Jedem Messapparat entspricht ein hermitescher Operator : (1) die Eigenenwerte dieses Operators sind immer reell (2) die Eigenfunktionen sind vollständig Ortsmessungen werden durch den Operator x beschrieben, Impulsmessungen durch den Impulsoperator p

10 von Neumannsches Messpostulat
Jedem Messapparat entspricht ein hermitescher Operator : (1) die Eigenenwerte dieses Operators sind immer reell (2) die Eigenfunktionen sind vollständig Jeder Zustand kann nach diesen Eigenfunktionen entwickelt werden Beispiel: Impulsbasis

11 von Neumannsches Messpostulat
Jedem Messapparat entspricht ein hermitescher Operator : (1) die Eigenenwerte dieses Operators sind immer reell (2) die Eigenfunktionen sind vollständig Jeder Zustand kann nach diesen Eigenfunktionen entwickelt werden Das Betragsquadrat | cl |2 gibt die Wahrscheinlichkeit, den Eigenwert l zu messen

12 von Neumannsches Messpostulat
Jedem Messapparat entspricht ein hermitescher Operator : (1) die Eigenenwerte dieses Operators sind immer reell (2) die Eigenfunktionen sind vollständig Jeder Zustand kann nach diesen Eigenfunktionen entwickelt werden Das Betragsquadrat | cl |2 gibt die Wahrscheinlichkeit, den Eigenwert l zu messen Nach der Messung von l, befindet sich das System im Zustand Yl von – Neumannsches Messpostulat … Reduktion der Wellenfunktion

13 Messprozess in der Quantenmechanik
Zusammenfassung des Messprozesses … Eigenzustände des Messoperators … Zustand vor Messung

14 Bennett-Brassard-Protokoll BB84
Anfang der 80er Jahre erkannte man, dass man mit der Quantenmechanik eine absolut abhörsichere Datenübertragung erzielen kann Im BB84 Protokoll wird ein zufälliger Schlüssel zwischen Alice und Bob aus- getauscht, der zur Verschlüsselung von Daten verwendet werden kann Kryptographie … Kann man Quantenmechanik benutzen, um Daten sicher zu übertragen ?

15 BB84-Protokoll : Ziel Ä 0110100... 0110100... Informationskanal Alice
Ziel des BB84 Protokoll ist es, einen zufälligen Schlüssel zwischen Alice und Bob auszutauschen Informationskanal Ä Alice Bob Eve eavesdropper Es soll verhindert werden, dass Eve den Schlüssel erhält, indem sie die Datenleitung abhört – dazu werden die Eigenheiten der Quantenmechanik ausgenutzt

16 BB84-Protokoll : Hardware
Benötigt wird eine Quelle, die einzelne Photonen aussendet, und ein Detektor für einzelne Photonen Alice 1 1 Bob 1 1 Quantenkanal Einphotonenquelle Photodetektor

17 BB84-Protokoll “ Å Ä Ä Å Ä ... “ Å Ä Ä Å Ä ... 0 1 1 0 1 ...
Öffentlicher Kanal “ Å Ä Ä Å Ä ... “ Alice 1 1 Bob 1 1 Quantenkanal Å Ä Ä Å Ä ... Ä Ä Å Å Ä ... Übereinstimmung in 50% Alice sendet die Photonen mit einer zufällig gewählten Polarisation Bob empfängt die Photonen, indem er die Basis für seinen Detektor zufällig wählt Am Ende teilen sich Alice und Bob über einen „öffentlichen Kanal“ (z.B. Internet, Telefon) mit, welche der Polarisationsbasen übereingestimmt haben

18 BB84-Protokoll “ Å Ä Ä Å Ä ... “ Ä Ä Å Ä Ä Å Ä ... 0 1 1 0 1 ...
Öffentlicher Kanal „... einige entschlüsselte Bits“ “ Å Ä Ä Å Ä ... “ Alice 1 1 Bob 1 1 Quantenkanal Ä Ä Å Ä Ä Å Ä ... Ä Ä Å Å Ä ... Übereinstimmung in 50% Eve ... muss Basis raten ! Wenn Eve den Kanal abhört, zerstört sie den Quantenzustand – Alice und Bob können feststellen, dass sie abgehört werden

19 BB84-Protokoll : Experiment
Das so eine „Quantenkryptographie“ tatsächlich funktioniert, wurde in einer Reihe von Experimenten gezeigt C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster & J. G. Garity, Nature 419, 450 (2002).

20 Zeilinger-Gruppe Nature 489, 269 (2012).

21

22 Experimentieren mit einzelnen Photonen
Nobelpreis 2012

23 Cavity-QED Atome, die durch eine Kavität fallen, wechselwirken mit den Lichtmoden. Durch die Wechselwirkung kommt es zu einem Energieaustausch, ähnlich wie bei zwei gekoppelten Pendeln

24 Gekoppelte Pendel Eigenmoden Schwebung Damit es zu einer Schwebung (Überlagerung von Eigenmoden) kommt, muss die Kopplung stärker als die Dämpfung sein

25 Lebensdauer von Atomen
Lebensdauer von Atomen ist durch spontane Emission von Photonen limitiert Wigner – Weisskopf – Zerfallsrate Rydbergzustände : n ~ 50 – 200, semiklassische Zustände - Lebensdauer von einigen ms - extrem große Dipolmomente

26 Lebensdauer von Kavität
Lebensdauer von Kavität ist durch „leaky modes“ und Verluste im Metall limitiert Durch supraleitende Spiegel (Nb) kann die Photon-Verweildauer (51 GHz) in der Kavität auf ca. 100 ms angehoben werden 0.1 x km / s = km !!!

27

28 Quantum non-demolition measurement (QND)
Die Energien von Atomübergang und Photon sind sehr verschieden, dadurch kommt es nur zu einer Phasenverschiebung aber keiner Absorption Überlagerungszustand Atom fällt durch Kavität Rücksetzen des Überlagerunszustandes Photoionisation

29 Quantum non-demolition measurement (QND)
Die Energien von Atomübergang und Photon sind sehr verschieden, dadurch kommt es nur zu einer Phasenverschiebung aber keiner Absorption Überlagerungszustand Atom fällt durch Kavität Rücksetzen des Überlagerunszustandes Photoionisation

30 QND – Messung einzelner Photonen
Quantum jumps of light recording the birth and death of a photon in a cavity „majority vote“ Gleyzes et. al, Nature 446, 297 (2007).

31 QND – Messung einzelner Photonen
Quantum jumps of light recording the birth and death of a photon in a cavity Ensemble Mittelung über (b) 5, (c) 15 und (d) 904 Ereignisse man erkennt, dass der Photonenzerfall exponentiell ist Gleyzes et. al, Nature 446, 297 (2007).


Herunterladen ppt "Formalismus der Quantenmechanik Messpostulat, Quantenkryptographie"

Ähnliche Präsentationen


Google-Anzeigen