Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Absorption von Röntgenstrahlung Absorptionsgesetz, „Halbwertsdicken“

Ähnliche Präsentationen


Präsentation zum Thema: "Absorption von Röntgenstrahlung Absorptionsgesetz, „Halbwertsdicken“"—  Präsentation transkript:

1 Absorption von Röntgenstrahlung Absorptionsgesetz, „Halbwertsdicken“

2 Inhalt Das Absorptionsgesetz Der Absorptionkoeffizient
Der Streuquerschnitt Absorption von Monochromatischer und Weißer Strahlung Halbwertsdicken

3 Absorption eines monochromatischen Strahls
1 Joule/(sm2) Intensität x cm Materialstärke Einfallender Strahl Intensität I0 Ausfallender Strahl Intensität I

4 Der Absorptionskoeffizient
1 Joule/(s·m2) Intensität nach Weg x in Materie I0 Einfallende Intensität x 1 cm Eindringtiefe μ 1/cm Absorptionskoeffizient Der Absorptionskoeffizient variiert mit der Energie (~1/Wellenlänge) der Strahlung Quelle zur Berechnung der Absorptionskoeffizienten und Streuquerschnitte:

5 Schwächungskoeffizient, Dichte und Streuquerschnitt
μ = σ ·ρ 1/cm Schwächungskoeffizient: Produkt aus Streuquerschnitt und Dichte ρ 1 g/cm3 Dichte σ = σKoh+ σPhoto +σCompton +σPaar 1 cm2/g Streuquerschnitt pro Masseneinheit Der Streuquerschnitt jedesTeilchens enthält vier Anteile: σKoh Anregung kohärenter Streuung σPhoto Photoeffekt σComton Compton-Effekt σPaar Paarbildung Diese Effekte führen zur Schwächung („Absorption“) der Strahlung auf ihrem Weg durch Materie Quelle zur Berechnung der Absorptionskoeffizienten und Streuquerschnitte:

6 Wechselwirkung eines Kohlenstoff Atoms mit Röntgenstrahlen durch kohärente Streuung
106 103 1 0, Kohärente Streuung bei W<500 keV: Die ganze Ladungswolke schwingt im Takt der einfallenden Strahlung und sendet in „Phase“ Strahlung gleicher Energie: „Rayleigh Streuung“ für alle Frequenzen unterhalb harten Röntgenlichts Paarbildung Kohärente Streuung Compton-Effekt Photoeffekt

7 Wechselwirkung eines Kohlenstoff Atoms mit Röntgenstrahlen durch Photoeffekt
Photoeffekt: Ein Photon ionisiert ein Atom, hier: Kohlenstoff 106 103 1 0, Paarbildung Kohärente Streuung Compton-Effekt Photoeffekt

8 Wechselwirkung eines Kohlenstoff Atoms mit Röntgenstrahlen durch Photoeffekt mit Anregung
Photoeffekt an- und hinter der Absorptionskante : Die Energie des Photons genügt zur Ionisation auf einer inneren Schale 106 103 1 0, Die Lücke wird unter Emission von Fluoreszenz-Strahlung aufgefüllt Paarbildung Kohärente Streuung Compton-Effekt Photoeffekt

9 Wechselwirkung eines Kohlenstoff Atoms mit Röntgenstrahlen durch Comptoneffekt
106 103 1 0, Compton-Effekt: Elastischer Stoß zwischen Photon und Elektron („Billard“) Paarbildung Kohärente Streuung Compton-Effekt Photoeffekt

10 Wechselwirkung eines Kohlenstoff Atoms mit Röntgenstrahlen durch Paarbildung
106 103 1 0, Paarbildung: Photon verwandelt sich in Elektron und Positron Paarbildung Kohärente Streuung Compton-Effekt Photoeffekt

11 Absorption eines weißen Strahls
In einem „weißen“ Strahl verändert der Absorber die Zusammensetzung des Spektrums, weil der Absorptionskoeffizient μ von der Wellenlänge abhängt x cm Materialstärke Einfallender weisser Strahl, Intensität I0 Ausfallender „gehärterer“ Strahl, Intensität I Im weißen Strahl mit Energie 1 < W < 120 keV werden nieder energetische, langwellige Anteile stärker absorbiert, deshalb enthält die Strahlung nach dem Filter mehr Anteile hoher Energie (mit kürzerer Wellenlänge), die Strahlung wird „härter“

12 Transmission von 2,5 mm Aluminium in Abhängigkeit von der Energie der Röntgenstrahlung
Ursprünglich weiße Strahlung mit Energie zwischen 1 und 65 keV enthält hinter dem Al Fenster praktisch nur noch Anteile mit Energie zwischen 25 und 65 keV

13 Absorption durch ein 2,5 mm Al-Fenster
Photoeffekt 106 103 1 0, 2,5mm Al-Filter Röntgen mit 65 kV Paarbildung Kohärente Streuung Compton-Effekt In Röhren zur Durchleuchtung filtert ein Fenster aus 2,5mm Al die weichen Anteile aus dem Strahl, die einerseits über den Photoeffekt ionisieren, andererseits nicht zur Durchleuchtung beitragen, weil sie schon in dünnen Schichten absorbiert werden

14 Anwendung: Röntgenröhre mit Al Filter
Heizstrom 4 A 2,5 mm Al Filter 120 kV 20 mA Langwellige Anteile der Strahlung werden schon im 2,5 mm Al Filter absorbiert und nicht erst im durchleuchteten Objekt

15 Halbwertsdicke 1 Joule/(sm2) Intensität „Halbe Intensität“ nach der Halbwertsdicke xH 1 Dividiert durch I0 cm Halbwertsdicke xH (ln 2 = 0,7) μ 1/cm Schwächungskoeffizient Nach der „ Halbwertsdicke“ ist die Intensität auf die Hälfte ihres Wertes bei Eintritt in das Material abgeklungen

16 Wichtige Elemente für die Röntgenabsorption in der Medizin
Link zum Periodensystem:

17 Halbwertsdicke in Luft als Funktion der Energie
20 m Betrieb mit 120 kV Bei 10 keV Halbwertsdicke 1 m Die Luftschicht um unserer Erde absorbiert die kosmische Röntgenstrahlung und schützt auf diese Weise das Leben an der Erdoberfläche vor ionisierender Strahlung

18 Halbwertsdicke in Wasser als Funktion der Energie
Betrieb mit 120 kV Bei 20 keV Halbwertsdicke 1 cm Bei 120 keV: 6 cm Die mittlere Absorption unseres Körpers entspricht in etwa der des Wassers

19 Halbwertsdicke in Aluminium als Funktion der Energie
Betrieb mit 120 kV Bei 20 keV Halbwersdicke 1 mm Bei 120 keV: 2,5 cm Filter: 2,5 mm Ein 2,5 cm starker Aluminium Absorber (nicht zu verwechseln mit dem 2,5 mm starken Fenster) dient der Kalibrierung medizinischer Röntgengeräte

20 Halbwertsdicke in Blei als Funktion der Energie
Bei 20 keV Halbwerstdicke 1/100 mm Betrieb mit 120 kV Bei 120 keV: 1/10 mm Blei mit 3 mm Stärke schirmt Röntgenstrahlung bis zur Energie 150 keV ab

21 Halbwertsdicken als Funktion der Energie für Luft, Wasser, Aluminium, und Blei für Photonenenergie zwischen 1 und 1000 keV

22 Zusammenfassung Das Absorptionsgesetz: Die Intensität I0 wird nach einem Weg der Länge d [1/cm] durch Materie mit Absorptionskoeffizienten μ [1/cm] zur Intensität I abgeschwächt - unabhängig vom Aggregatzustand I = I0·exp(-μd) Der Absorptionskoeffizient μ steigt mit der Elektronenzahl und Dichte des Absorbers Bei Energie der Strahlung zwischen 1 und 120 keV mit der Wellenlänge der einfallenden Strahlung Blei absorbiert sehr gut: 3 mm Pb absorbiert Strahlung bis zu 120 keV praktisch vollständig Aluminium 2,5 mm dickes Aluminium absorbiert „weiche“ Strahlung unter 20keV praktisch vollständig ist für Strahlung höherer Energie praktisch transparent ist deshalb Standard-Filter an Röntgenröhren zur Durchleuchtung Ist für Abschirmungen - wegen der Transparenz für Strahlung mit Energie über 20keV - ungeeignet Berechnung der Streuquerschnitte und Absorptions- Koeffizienten

23 Einfluss des Aggregatzustandes?
Q: Wo bleibt der Einfluss des Aggregatzustandes und der chemischen Bindung bei der Berechnung der Röntgenabsorption? A: An der Röntgenabsorption sind– vor allem – die inneren Elektronen beteiligt Chemischen Bindung und Bindung in unterschiedlichen Aggregatzuständen betreffen die Valenzelektronen


Herunterladen ppt "Absorption von Röntgenstrahlung Absorptionsgesetz, „Halbwertsdicken“"

Ähnliche Präsentationen


Google-Anzeigen