Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

PowerPoint-Folien zur 7. Vorlesung „Bionik I“

Ähnliche Präsentationen


Präsentation zum Thema: "PowerPoint-Folien zur 7. Vorlesung „Bionik I“"—  Präsentation transkript:

1 PowerPoint-Folien zur 7. Vorlesung „Bionik I“
Ingo Rechenberg PowerPoint-Folien zur 7. Vorlesung „Bionik I“ Lokomotions-Techniken von Wassertieren Flossen-Propulsion und Gleittechnik fliegender Fische Weiterverwendung nur unter Angabe der Quelle gestattet

2 1. Den Strömungswiderstand so klein wie möglich halten
Zwei Seiten des Energiesparens bei schnellen Wassertieren 1. Den Strömungswiderstand so klein wie möglich halten cw → Min 2. Den Antrieb so effektiv wie möglich gestalten h → Max

3 Flossenpropeller - Forelle

4 Schnellstart einer Forelle nach H. Hertel
Startbeschleunigung 5g 2,6 m/s 0,15 s Schnellstart einer Forelle nach H. Hertel

5 Wie entsteht der Schub einer Fischflosse
Auftrieb Nicht so … sondern so

6 v v v A W Vortrieb durch Auftrieb Auftriebstheorie von Heinrich Hertel

7 Schuberzeugung einer Fischflosse
Delfin schwimmt nach oben Schuberzeugung einer Fischflosse Demonstration der Hertelschen Auftriebstheorie Anstellwinkel

8 Bei Vorwärtsbewegung Schub Auftrieb (Hier Aufwärtsbewegung !)
Schräganströmung durch Bewegung nach oben Erhöhung des Anstellwinkels damit kein Abtrieb entsteht Bei Vorwärtsbewegung (Hier Aufwärtsbewegung !)

9 Wirbeltheorie von W. Liebe
Umströmung der Flossenhinterkante 1 Ausbildung eines Hinterkantenwirbels 2 Grenzschichtteilchen strömen in den Wirbel 3 Wirbel mit Kern wird nach hinten geschleudert 4 Leertakt ohne Umströmung der Flossehinterkante 5 Wirbeltheorie von W. Liebe Spiegelbildlich identisch zum Arbeitstakt 1 6 (Flexible Flosse, Ansicht von oben)

10 Moderne Theorie: Schub durch Ringwirbelsysteme

11 Schub erzeugende Wirbelsysteme
Wirbel- Ringe Schub erzeugende Wirbelsysteme Wirbel- Spule Wirbel- Faltblatt

12 Ringwirbelstraße einer Qualle
Nicht ganz richtig ! Siehe weiter unten ! Ringwirbelstraße einer Qualle

13 Strömungsbeschleunigung durch
eine Wirbelfaltblattstruktur hinter einer schlagenden Flosse

14 Wirbelbild Delfinflosse
Wirbelspule ?

15 Forschungshütte der “Bionik und Evolutionstechnik” in der Antarktis

16 South Shetlands, Antarktis
Beschleunigungssensoren Die Messwerte werden über das vom Pinguin hinterher gezogene Kabel übertragen Kabel Pinguin im Schwimmkanal King George Island South Shetlands, Antarktis

17 Anstelle des Kabels zieht der Pinguin einen dünnen Plastikschlauch
1 Pinguin im Schwimmkanal Anstelle des Kabels zieht der Pinguin einen dünnen Plastikschlauch 2 Durch den Plastikschlauch wird Farbe geleitet Wirbelring 3 Bildung eines Schub erzeugenden Wirbelrings

18 eine Wirbelfaltstruktur
Schub Wirbelringe CFD Schuberzeugung durch eine Wirbelfaltstruktur

19 ? Welchen (strömungstechnischen) Zweck hat die Fahne an der Flossenspitze des Hais ?

20 Wirbelring im Wirbelring ?
Nature 430, 850 (19 August 2004) C. D. Wilga & G. V. Lauder Biomechanics:  Hydrodynamic function of the shark's tail

21 Welchen (strömungstechnischen) Zweck hat das Zackenband am Rumpfende des Tunfischs ?
Nasenband Welchen (strömungstechnischen) Zweck hat das Nasenband an der Flossenvorderkante des Buckelwals ?

22 CFD Rechnungen und Messungen am Tragflügel mit und ohne Nasenband

23 Flossenboote

24 Zurück zum technischen Propeller

25 Der Strahlwirkungsgrad eines Propellers
Strömungspfropfen Siehe „Betz“ in BERWIAN-Vorlesung S S Der Propeller bewegt sich mit v0 durch die Luft Vortriebsleistung: Antriebsleistung: Vortriebswirkungsgrad: Möglichst klein Der Strahlwirkungsgrad eines Propellers

26 → kleine Luftbeschleunigung
Muskelkraftflugzeug Hallenflugmodell Große Luftschraube → kleine Luftbeschleunigung → hoher Wirkungsgrad

27 Die Caravelle h sehr klein Triebwerksstrahl sehr hoher Geschwindigkeit
Erstes strahlgetriebenes Kurz- und Mittelstrecken-Verkehrsflugzeug der Welt (1960 – 1980)

28 Auf dem Fährschiff bei Gibraltar nach Afrika
Schaumschläger Auf dem Fährschiff bei Gibraltar nach Afrika Ein unmöglicher Antrieb

29 Das Ineinandergreifen von Schub und Widerstand
Der Trick der Natur die Strömung an der richtigen Stelle anzutreiben Das Ineinandergreifen von Schub und Widerstand

30 Das Propeller-Sieb-Modell

31 ? a b v v Das Propeller-Sieb-Modell
Ein Sieb soll durch die Luft bewegt werden Die Euro-Frage: Ist aus energetischer Sicht: „a“ besser als „b“ „b“ besser als „a“ „a“ so gut wie „b“ Sieb ? Das Propeller-Sieb-Modell von Heinrich Hertel

32 a v v v v c b 1 2 L L 1 L - + = 1 30 , 1 = L v v v + - = + v v v v
Sieb a v 2 v v v æ ö 1 + 2 - ç S ÷ S L v è ø b = v L + a 1 S v w c a b L - + = 1 30 , 1 = a b L Für cw = 0,5 v v b P Das Propeller-Sieb-Modell von Heinrich Hertel v v S

33 v v v v F Schub des Propellers: F Widerstand des Siebes:
Impulssatz der Strömungslehre v v F S P Widerstand des Siebes: Impulssatz der Strömungslehre v v Bedingung für stationäre Bewegung: S Bedingung: F = F = F S P Erforderliche Propellerleistung:

34 v0 vS vP F F Schub des Propellers: Widerstand des Siebes:
Impulssatz der Strömungslehre Widerstand des Siebes: Impulssatz der Strömungslehre v0 vS vP Bedingung: F = F = F S P Bedingung für stationäre Bewegung: Erforderliche Propellerleistung:

35 Leistungsverhältnis:
1,0 1,00 0.8 1,20 0,6 1,43 0,4 1,68 0,2 2.00 2,41 v L L S N H

36 Propeller-Sieb-Modell
Nebeneinander und hintereinander Test im Windkanal hat die Theorie bestätigt

37 Anschauliche Interpretation des Ergebnisses
Im Raum zurückgelassene Geschwindigkeiten Zwei Propeller-Sieb-Vehikel durchfliegen einen Raum

38 Integrale Antriebe in der Natur
Vogel Fisch Paramecium Aal Qualle Manta

39 Nachlaufbeschleunigung: Verkehrsjet
(NASA-Studie)

40 Vision: Flugzeug mit Integralantrieb

41 Die Qualle: Ein ideales Triebwerk ?
Strömungseintritt und Beschleunigung Helmholtzscher Wirbelsatz: Es können nur entgegengesetzt drehende Wirbelpaare existieren ! Ringwirbel Die Qualle: Ein ideales Triebwerk ? Die Qualle erfasst und beschleunigt Strömung über einen größeren Querschnitt als es ihrer eigenen Stirnfläche entspricht

42 Richtigstellung der Ringwirbelstraße einer Qualle
Einstrom zwischen den Doppelwirbelringen Richtigstellung der Ringwirbelstraße einer Qualle

43 Wie lassen sich abgebremste Strömungsteilchen selektiv sammeln und beschleunigen ?

44 1 2 3 4 5 6 Wirbeltheorie von W. Liebe
Umströmung der Flossenhinterkante 1 Ausbildung eines Hinterkantenwirbels 2 Grenzschichtteilchen strömen in den Wirbel 3 Wirbel mit Kern wird nach hinten geschleudert 4 Leertakt ohne Umströmung der Flossehinterkante 5 Spiegelbildlich identisch zum Arbeitstakt 1 6 Wirbeltheorie von W. Liebe

45 Saugwirkung eines Wirbels
Unterdruck Zentrifugiertes Strömungsteilchen Saugwirkung eines Wirbels Gebremstes Strömungsteilchen Reibfläche Durch fehlende Zentrifugalkraft wird das Teilchen in den Wirbelkern gesaugt

46 Grenzschicht-Sammlung in einem Wirbel
Vortex Generatoren Tusche Grenzschicht-Sammlung in einem Wirbel Randwirbel

47 Lernen vom fliegenden Fisch

48 Schub/Gleit-Technik eines fliegenden Fischs

49 Schubwirkungsgrad des fliegenden Fischs
Schub S Für

50 Prototyp "Seafalcon": Ende Oktober 2006 wurde das sogenannte Bodeneffekt-Fahrzeug erstmals zu Wasser gelassen. Mit der Technik kann das Gefährt übers Wasser fliegen. Anstatt von der „nachgiebigen“ Luft sollte sich das Bodeneffekt-Flugzeug besser vom „härteren“ Wasser abstoßen !

51 Entwurf eines Bodeneffekt-Flugzeugs von Boeing
„Pelican“ Entwurf eines Bodeneffekt-Flugzeugs von Boeing Spannweite 152 m, Länge 109 m Reichweite km bei einer Flughöhe von 6 m

52 Der Schienenzepp von Franz Kruckenberg
fuhr am 21. Juni 1931 in 98 Minuten von Hamburg-Bergedorf nach Berlin Spandau und hielt 24 Jahre den Geschwindigkeits-rekord von 230 km/h. Dennoch: Die Antriebsleistung sollte vollständig auf das Fahrzeug und nicht zum Teil auf einen Luftstrahl übertragen werden !

53 Ende


Herunterladen ppt "PowerPoint-Folien zur 7. Vorlesung „Bionik I“"

Ähnliche Präsentationen


Google-Anzeigen