Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Vorlesung Biologische Psychologie C. Kaernbach

Ähnliche Präsentationen


Präsentation zum Thema: "Vorlesung Biologische Psychologie C. Kaernbach"—  Präsentation transkript:

1 Vorlesung Biologische Psychologie C. Kaernbach
Nervenzellen Vorlesung Biologische Psychologie C. Kaernbach Literatur: Schandry, Kapitel 3-5 Vertiefung: Kandel, Schwartz, Jessell: Principles of Neural Sciences Wikipedia: empfohlen bzw. bei weiterführendem Interesse

2 Aufbau einer Zelle Zellmembran: Doppellipidschicht
Prokaryoten (gr. pro „vor“, karion „Kern“) kein Zellkern, DNA schwimmt frei im Zytoplasma Archaeen („Urbakterien“), oft extremophil, nicht pathogen Bakterien Unterschiede in den Ribosomen Eukaryoten (gr. eu „gut“, „echt“) Zellkern Doppelmembran: Mitochondrien zwei Doppellipidschichten weitere „Organellen“ (membranumgeben) Nach neuer Definition von "Organelle" sind Ribosomen (anders als im Schandry) keine Organellen, da nicht von Membran umgeben.

3 Zellkern Doppelmembran (Kernhülle) Kernkörperchen, Nucleoli
äußere Membran: Ribosomen geht über in das (raue) endoplasmatische Retikulum (ER) innere Membran: „Formfaktor“ dazwischen: perinukleärer Raum in Verbindung mit Lumen des ER ca Kernporen 8 Speichen, in der Mitte ein Plug Transfer von rRNA, mRNA, ... Kernkörperchen, Nucleoli „Ribosomenfabrik“ Chromosomen Mitose Meiose Zellzyklus

4 Mitochondrien „Kraftwerke“ der Zelle Aufbau: Doppelmembran
innere Membran umschließt „Matrix“ in der Matrix: Citratzyklus, vor allem Fettsäureabbau auf innerer Membran: Atmungskette, Erzeugung von ATP Zwischenmembranraum: Nukleotidphosphorylierung Proteinkomplexe (Porin) als Poren Ursprung: Endosymbiose mit Bakterien ähnlich Rickettsien (Fleckfieber) innere Membran atypisch (Cardiolipin), Hülle vom Symbiont eigene DNA (unvollständig), eigene Ribosomen, Sprossung Vererbung ausschließlich über Zytoplasma der Mutter bis auf eventuelle Mutationen ein Klon Mitrochondriopathien

5 andere Organellen Golgi-Apparat Lysosomen
Stapel membranbegrenzter Hohlräume Weiterverarbeitung von Proteinen, Zuckern, Lipiden: Sekretbildung, Hormone, Membranproteine & -lipide, Lysosomen vom Golgi-Apparat gebildet, enthalten Enzyme zur Verdauung von Fremdstoffen andere Vesikel, z.B. mit Neurotransmittern

6 Endoplasmatisches Retikulum
dynamisch sich veränderndes Labyrinth aus Zellmembran (Doppellipidschicht), ER-Lumen steht mit perinukleärem Raum in Verbindung raues ER: mit Ribosomen besetzt, Proteinsynthese, Membransynthese glattes ER: u. a. Synthese von Lipiden und Hormonen Lumen: Calcium-Speicher (103mol/l, Cytosol: 107mol/l), wichtig für Signaltransduktion

7 Signaltransduktion Reaktion auf (aus Sicht der Zelle) äußere Reize:
Licht, mechanische Reizung (Hören), Geruch Blutdruck, Hormone, Neurotransmitter Immunreaktion, Muskelkontraktion, Morphogenese Rezeptoren: Proteine im Cytosol: für kleine oder lipophile Moleküle membranständig: 4 oder 7 Transmembranproteine Ionenkanäle: Membranpermeabilität ändert sich „G-Protein-gekoppelt“: GTP-bindendes Protein zerfällt ... Reiz: Ligand (dringt nicht ein), Spannung, Photon, ... Second Messenger (z.B. Ca2+), Signalkaskade

8 Zytoskelett definiert Form der Zelle, ermöglich Motilität
Aktinfilamente äußere Form, Motilität Mikrotubuli Tubulinpolymer Hohlzylinder 25 nm innere Stabilität, Motilität innerzellulärer Transport von Vesikeln etc. entlang der Mikrotubuli Intermediärfilamente sehr stabil, Stützgerüst Motilität / Mobilität Endothelzellen. Blau: Zellkerne. Grün: Mikrotubuli. Rot: Aktinfilamente

9 Nervenzelle Auf Erregungsleitung spezialisierte Zelle
Soma: Synthese von Proteinen und Lipiden Axon, entspringt am Axonhügel oft myelinisiert Schwannsche Zelle (Glia): Myelinscheide (Isolierung) alle 1-2 mm Ranvierscher Schnürring: saltatorische Erregung Leitungsgeschwindigkeit  Faktor 10, bis zu 120 m/s Mikrotubuli („Neurotubuli“) sichern Transport z.B. Vesikel mit Neurotransmitter, Rücktransport am Ende Verzweigungen, Synapsen Dendriten kürzer, stärker verzweigt, Dendritic Spines

10 Neuronentypen Klassifikationen nach äußerer Form Neurotransmitter
Pyramidenzellen, Sternzellen, ... Neurotransmitter cholinerg, adrenerg, gabaerg, ... Richtung afferent, efferent Funktion sensorisch, motorisch, Interneuron

11 Gliazellen 10-50 mal häufiger als Neurone, kleiner
50% der Gehirnmasse behalten (anders als Nervenzellen) nach Entwicklung des Nervensystems Fähigkeit zur Zellteilung Stützfunktion, Führungselemente beim Wachstum Ionenmilieu um Neurone herstellen Astrozyten: Blut-Hirn-Schranke Endo-/Exozytose von Glutamat beeinflußt Neurone Oligodrendrozyten: Myelinscheiden Mikroglia: Abwehr- und Immunfunktion

12 Myelinscheiden Peripherie: Schwann-Zellen ZNS: Oligodrendrozyten
jeweils nur eine Myelinscheide pro Zelle Stützfunktion (ohne Scheide) auch für mehrere Zellen ZNS: Oligodrendrozyten weiße Substanz Demyelinisierungserkrankung Multiple Sklerose

13 Diffusion durch Membranen
Flüssigkeiten: Osmose Wasserpotential Gase: Partialdruck unterschiedliche Substanzgemische auf zwei Seiten einer Membran Selektivpermeabilität Durchmischung durch thermische Bewegung angestrebt: Gleichheit der Osmolarität wichtig: Teilchenzahl, nicht Teilchenart, -größe, -masse, ... Gleichgewicht: Summe der osmotischen Drücke = hydrostatischer Druck selektivpermeable Membran ?

14 Spezialfall Ionen Biomembranen für Ionen impermeabel
für Protein-Ionen() impermeabel aber: spezifische Ionenkanäle für Na+, K+, Ca2+, Cl aktiviert durch Spannungen, Ionen, Proteine, mechanisch, aber auch in Ruhe Beispiel passiver Kaliumkanal K+ verliert an der einen Seite der Pore seine Hydrathülle, C=O Gruppen übernehmen innen H-Brücken auf der anderen Seite der Pore wieder hydriert in Ruhe vor allem Kaliumkanal aktiv aktiver Transport: K+ rein, Na+ raus elektrische vs. osmotische Kräfte

15 Aktiver Transport Natrium-Kalium-Pumpe (auch: Na+/K+-ATPase)
Na+- & K+-Transport gekoppelt & energieabhängig: 3 Na+ werden aus der Zelle hinaustransportiert 2 K+ werden in die Zelle hineintransportiert 1 ATP wird „verbraucht“: Phosphorylierung eines Aspartat-Restes führt zur Konfigurationsänderung Diffusion: Na+ will rein (kann nicht), K+ will raus (ok) K+ strömt aus, bis elektrisches Potential dem entgegenwirkt Bilanz: außen positiv innen negativ

16 Membranpotential existiert in allen Zellen (Steuerung von Ionenströmen) für elektrisch erregbare Zellen: Ruhemembranpotential Natrium-Kalium-Pumpe 3 Na+ aus der Zelle , 2 K+ in die Zelle, K+-Ionen diffundieren teilweise wieder raus ⇨ negatives Potential Nernst-Gleichung für Ionen E = (RT/zF) ln(c1/c2)  60 mV/z log10(c1/c2) T: Temperatur, R: Gaskonstante, F: Faradaykonstante z: Wertigkeit des Ions, c1, c2: Konzentrationen ergibt Potentialdifferenz pro Ionenart: diejenige Spannung, bei der keine Ionenwanderung stattfände Membranpotential dominiert von K+-Ionen Schandry: bei der Nernst Gleichung „Grad Kelvin“. Gibt es nicht. Es gibt nur Kelvin.

17 Membranpotential Membranpotential dominiert von K+-Ionen Ion
cinnen mmol/l caußen mmol/l Verhältnis Potential mV Na+ 7-11 144 1:16 +72 K+ 4-5 33:1 -91 Ca2+ 105-104 2 1:100000 +150 Cl 4-7 120 1:20 -78 Proteine 155 5 31:1 Membranpotential dominiert von K+-Ionen Natriumleckströme reduzieren das Membranpotential Permeabilität für Na+ zwar gering, aber Membranpotential weit von Na+-Gleichgewichtspotential

18 Lokale Änderung des Membranpotentials
Änderung an einer Stelle, z. B.: Na+-Kanäle gehen auf Na+ strömt ein Potential wird positiver „depolarisiert“ weitere K+-Kanäle gehen auf K+ strömt aus Potential wird negativer „hyperpolarisiert“ Erregungsleitung Elektrotonische Ausbreitung ⇨ fast instantan, aber verlustreich, Reichweite max. 0,1 mm Aktionspotentiale...

19 Aktionspotential bei elektrisch erregbaren Zellen
Negative Stimulation (Hyperpolarisation) elektrotonische Leitung Positive Stimulation (Depolarisation) bis zu einer Schwelle elektrotonische Leitung jenseits der Schwelle Aktionspotentiale gleicher Größe Alles oder Nichts

20 Aktionspotential bei elektrisch erregbaren Zellen
ab -40 mV öffnen spannungsabhängige Natriumkanäle Depolarisation („Aufstrich“), Overshoot nach ca. 1 ms wieder inaktiv ebenfalls ab -40 mV öffnen spannungsabhängige Kaliumkanäle langsamer Repolarisation, Hyperpolarisation und nachher? alles wieder in Ordnung?

21 Kontinuierliche Erregungsleitung
Marklose Nervenfasern (nicht myelinisiert) Aktionspotential an einer Stelle der Faser bewirkt per elektrotonischer Leitung Depolarisation in benachbarten Abschnitten über den Schwellwert Übertragungsgeschwindigkeit langsam 1-3 m/s, max. 30 m/s steigt in etwa linear mit Durchmesser der Faser ANS, Nozizeptoren Schauer über den Rücken erst Nacken, dann Rücken/Arme, dann Beine: spürbares Erlebnis der langsamen Weiterleitung im ANS

22 Saltatorische Erregungsleitung
Markhaltige Nervenfaser (myelinisiert) Markscheide aus Myelin isoliert die Zelle verbessert elektrotonische Leitung: 0,1mm ⇨ 5 mm alle 1-2 mm: Ranvierscher Schnürring Aktionspotential erreicht am nächsten Schnürring Schwelle m/s nicht pränatal

23 Fragen Kann eine Erregung (bei elektrotonischer oder saltatorischer Weiterleitung) rückwärts laufen? Wie lange dauert ein Aktionspotential? Wie lang ist die gleichzeitig von einem Aktionspotential betroffene Strecke bei einer Weiterleitungsgeschwindigkeit von kontinuierlicher Weiterleitung = 1 m/s? saltatorischer Weiterleitung = 100 m/s? Wie viele Schnürringe betrifft das?

24 Frequenzkodierung

25 Axonhügel Ursprungsstelle des Axons am Soma
Einsetzen spannungsabhängiger Na+-Kanäle noch nicht von Myelin umhüllt

26 Klassifikation von Nervenfasern
nach Durchmesser und Nervenleitgeschwindigkeit nach Erlanger / Gasser (1937) A µm m/s L/H: I A 7-15 µm m/s L/H: II A 4-8 µm m/s A 2-5 µm m/s L/H: III B 1-3 µm 5-20 m/s C 0,5-1,5 µm 0,5-2 m/s (marklos) L/H: IV nach Lloyd / Hunt (1943) I µm m/s II 7-12 µm m/s III 2-7 µm m/s IV 0,5-1,5 µm 0,5-2 m/s (marklos)

27 Spontanaktivität Fast alle elektrisch erregbaren Zellen (also solche mit spannungsabhängigen Na+-Kanälen) weisen Spontanaktivität auf. Inhibitorische Einflüsse vorgeschalteter Zellen können Spontanaktivität unterdrücken ermöglicht bipolare Kodierung Beispiel: Vasokonstriktor-Neurone Gegenbeispiel: Piloerector-Neurone Sonderfall: Sinusknoten im Herzen Schrittmacherneuron häufiger als im Schandry unterstellt

28 „Elektrische“ Synapsen
Annäherung der Zellmembranen auf 2-4 nm Gap junctions Kennzeichen von Gewebetieren (Eumetazoa) aufeinander gerichtete Membranporen zwei Connexone aus je 6 Connexinen zum Nährstoffstransport in wenig durchbluteten Gebieten (unter anderem auch) Ionenaustausch gap junction laut Schandry 2-4 mm?

29 Chemische Synapsen Aktionspotential in präsynaptischer Endigung
Spannungsgesteuerte Ca2+-Kanäle öffnen sich, Ca2+ dringt ein Vesikel mit Neurotransmittern ergießen sich in den synaptischen Spalt (20-50 nm) oft mehrere Vesikelarten in einer Synapse für verschiedene Transmitter und Kotransmitter Transmitter reagieren mit Rezeptoren an postsynaptischer Membran z. B. Na+-Kanäle öffnen sich ⇨ Depol. oder Cl--Kanäle öffnen sich ⇨ Hyperpol. Autorezeptoren (präsynaptisch) regulieren Transmitterausschüttung Transmitterabbau oder Wiederaufnahme (re-uptake) funktioniert (anders als im Schandry dargestellt) auch, wenn der subsynaptische Bereich nicht erregbar ist (elektrotonische Leitung zu erregbarem Bereich)

30 Rezeptoren Typ-I-Rezeptor Typ-II-Rezeptor
ligandengesteuerter Ionenkanal ionotroper (direkter) Rezeptor schnell Typ-II-Rezeptor G-Protein-gekoppelter Ionenkanal metabotroper (indirekter) Rezeptor flexibel

31 Neurotransmitter 1000 Sorten Acetylcholin Katecholamine Serotonin
Dopamin Adrenalin Monoamine Noradrenalin Serotonin Aminosäuren als Neurotransmitter Glutamat GABA Glycin Neuropeptide (Peptidhormone) Neuropetid Y, ACTH, Substanz P, Endorphine, ...

32 Acetylcholin Esther von Essigsäure und Cholin nikotinerger Rezeptor
ionotrop, depolarisierend Muskelzellen, ZNS muskarinerger Rezeptor metabotrop, de- od. hyperpolarisierend Vegetativum, ZNS wird im synaptischen Spalt zerlegt, Cholin wird wieder aufgenommen ACh-Gifte Botulinumtoxin behindert ACh-Freisetzung 1 Molekül ruiniert 1 Synapse E605, Sarin behindern ACh-Abbau Gegengift: Atropin (ACh-Antagonist) Loewi, 1921: „Vagusstoff“

33 Katecholamine Katecholring
Biosynthese aus der proteinogenen Aminosäure Tyrosin L-DOPA nicht-proteinogene Aminosäure Dopamin Amin Noradrenalin Adrenalin Wiederaufnahme, (Abbau) Schandry, Abbildung 5.7: Klammern „Dopaminneurone“ etc. nicht erklärt

34 L-DOPA Levodopa, L-DOPA, L-Dihydroxyphenylalanin
ist selbst kein Neurotransmitter passiert Blut-Hirn-Schranke wird dort zu Dopamin metabolisiert Behandlung von Parkinson Restless-Legs-Syndrom Encephalitis lethargica Buch Awakenings von Oliver Sacks Film mit Robert De Niro, Robin Williams auch von O.S.: The man who took his wife for a hat heute: Dopamin-Agonisten, rezeptorspezifisch, tiefe Hirnstimulation

35 Dopamin fünf Dopamin-Rezeptor Subtypen, D1-D5, metabotrop Vorkommen
unterschiedliche Verteilung / Funktion D1, D5: Depolarisierung D2, D3, D4: Hyperpolarisierung D2-Rezeptor: auch Autorezeptor Vorkommen Mittelhirn Substantia nigra, Tegmentum, u. a. viele Funktionen, u. a. Steuerung der Willkürmotorik Suchtverhalten Vegetativum innere Organdurchblutung

36 Noradrenalin das „normale“ Adrenalin (Nebennierenhormon) als Hormon
ausgeschüttet vom Nebennierenmark als Neurotransmitter Vegetativum postganglionäre Synapsen des sympathischen Nervensystems ZNS produziert im Locus caeruleus („blauer Fleck“) der Medula Rezeptoren siehe Adrenalin Schandry: a1 in "Fasern der Skelettmuskulatur"?

37 Adrenalin Adrenozeptoren (Adrenalin und Noradrenalin)
metabotrop, 3 Familien mit 3-4 Subtypen 1: ZNS, Sympathikus, Urogenitaltrakt, Blutgefäße 2: prä- und postsynaptisch, peripher und zentral : Herz, glatte Muskulatur (Bronchien) unterschiedliche Affinitäten für Adrenalin/Noradrenalin Noradrenalin bindet insgesamt schwächer, und kaum an -Rezeptor als Hormon ausgeschüttet vom Nebennierenmark als Neurotransmitter: kaum (Hirnstamm) Schandry: a1 in "Fasern der Skelettmuskulatur"?

38 Serotonin Biosynthese aus proteinogener Aminosäure Tryptophan
Gewebshormon Vorkommen in Blutplättchen und Mastzellen 19 verschiedene Rezeptoren bekannt (7 Familien) Herz-Kreislauf-System Blutgerinnung Kontraktion und Relaxation von Blutgefäßen gastrointestinale Motilität LSD (Lysergsäurediethylamid)

39 Einschub: Monoaminooxidase (MAO)
Mitchondrales Enzym beteiligt am intrazellulären Abbau der Monoamintransmitter (nach re-uptake) Dopamin Noradrenalin Adrenalin Serotonin Medikament: MAO-Hemmer verstärken den Effekt von Monoamintransmittern

40 Glutamat Anion der proteinogenen Aminosäure Glutaminsäure
Aminosäurentransmitter allgemein: häufig Konzentration im Gehirn Faktor 1000 höher als bei Monoamintransmittern Rezeptoren: ionotrop und metabotrop NMDA-Rezeptor NMDA = (N-Methyl-D-Aspartat) = synthetischer Agonist von Glutamat spannungs- und ligandengesteuert

41 GABA Aminosäure -Amino-Buttersäure (GABA)
wichtigster hemmender Transmitter des ZNS bis zu 50% der hemmenden Synapsen des ZNS re-uptake GABAA und GABAC-Rezeptoren: ionotrop (Cl) GABAB: metabotrop, präsynaptisch: reduziert Ca2+-Eintrom postsynaptisch: reduziert K+-Einstrom? GABAA-Agonisten Benzodiazepine, Barbiturate (Tranquilizer)

42 Glycin einfachste proteinogene Aminosäure inhibitorisch, re-uptake
Rückenmark (Motoneurone) und Hirnstamm ionotroper Rezeptor (Cl-Kanal) Glycinantagonisten Strychnin: Rezeptorblockade überschießende Erregung der Muskulatur, Atmungsfunktion gestört Tetanus: verhindert Freisetzung von GABA & Glycin „Wundstarrkrampf“

43 Neuropeptide Aminosäurenketten über 100 Peptide bekannt Hormone
Kotransmitter über 100 Peptide bekannt CRH, ACTH Neuropetid Y Hunger, Angst, Magen-Darm-Motorik 6 Rezeptoren Y1 – Y6 Substanz P (Schmerzrezeptoren) Endorphine (endogenes Morphin) Im Schandry wird die Rolle als Kotransmitter nicht erwähnt

44 Neurotransmitter 1000 Sorten
jeder Transmitter kann mehrere Rezeptoren haben die spezifischen Rezeptoren sind an unterschiedlichen Stellen im ZNS aktiv die einzelnen Rezeptoren können unterschiedlich wirken, z. B. prä- oder postsynaptisch (D2-Rezeptor bei Dopamin) de- oder hyperpolarisierend (Muskarin-Rezeptor für ACh) spannungs- und/oder ligandengesteuert (NMDA-Rezeptor)

45 Neuronale Integration von Information
elektrotonische Weiterleitung des (inhibitorischen / exzitatorischen) postsynaptischen Potentials zum Axonhügel räumliche Addition / Subtraktion (Konvergenz) ⇨ Aktionspotential? zeitliche Summation (Potenzierung) an der Präsynapse (Ca2+ ) an der Postsynapse (echte „zeitliche Summation“)? „tetanische Potenzierung“ posttetanische Potenzierung: erhöhte Reizbarkeit

46 Hemmung präsynaptische Hemmung
laterale Hemmung zur Kontrastverschärfung


Herunterladen ppt "Vorlesung Biologische Psychologie C. Kaernbach"

Ähnliche Präsentationen


Google-Anzeigen