Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Den Elementarteilchen auf der Spur

Ähnliche Präsentationen


Präsentation zum Thema: "Den Elementarteilchen auf der Spur"—  Präsentation transkript:

1 Den Elementarteilchen auf der Spur
Ulrike Schnoor Masterclass im Schülerlabor HZDR, 6. Juli 2011 Ulrike Schnoor

2 TEILCHENPHYSIK – Was fällt Euch dazu ein?

3 Teilchenphysik … und jetzt zur Physik! Aufbau der Materie
Wechselwirkungen der Teilchen Eigenschaften der Elementarteilchen Experimentell: Untersuchung von Teilchen an Beschleunigern (LHC, DESY, … → Suche nach Higgs-Boson, ...) Theoretisch: Entwicklung neuer Theorien (Stringtheorie, „Weltformel“, Supersymmetrie, ...)

4 Vom Atom zu den Quarks Aufbau der Materie
Atomkern → Protonen + Neutronen → Quarks Atom Hülle: Elektronen

5 Größenvergleich Zum Vergleich: Menschliches Haar: 50 μm = 50 · 10-6 m
Wie klein sind die kleinsten Komponenten der Materie? Zum Vergleich: Menschliches Haar: 50 μm = 50 · 10-6 m Atom: 0.1 nm = m Scale of the Universe

6 Standardmodell – Bausteine des Universums
= Fundamentale Bausteine der Materie + Kräfte zwischen den Teilchen Botenteilchen als Vermittler der Kräfte

7 Antimaterie Zu jedem Bausteinteilchen existiert ein Antiteilchen mit umgekehrten Ladungsvorzeichen Sonst sind alle Eigenschaften (Masse, Lebensdauer) gleich Aus Botenteilchen können paarweise Materie- und Antimaterieteilchen entstehen Umgekehrt können Sich diese wieder zu Botenteilchen vernichten Achtung: Energieerhaltung!

8 und weitere Quarks, Antiquarks und Gluonen
Aufbau des Protons Proton enthält up-Quarks und down-Quarks ... und weitere Quarks, Antiquarks und Gluonen

9 4 fundamentale Wechselwirkungen
Zu jeder Wechselwirkung gehört eine Ladung Nur Teilchen mit entsprechender Ladung spüren die Kraft Wechselwirkung erfolgt über Austausch von Botenteilchen Abstoßend Anziehend

10 Was ist eine Ladung? Fundamentale Eigenschaft eines Teilchens
Kommen nur in Vielfachen einer kleinsten Ladungsmenge (Elementarladung) vor Ladung ist erhalten, d.h. sie entsteht weder neu, noch geht sie verloren Farbladung: rot + grün + blau = weiß Elektrische Ladung

11 Die elektromagnetische Kraft
Ladung: elektrische Ladung Q Arten: eine Ladungsart: „Zahl“, positiv oder negativ Botenteilchen: Photon Eigenschaften: elektrisch neutral: Q= masselos : m=0 Besonderheiten: Unendliche Reichweite Makroskopisch beobachtbar Teilchen Elektron up-Quark down-Quark Neutrino Ladung -1 +2/3 -1/3

12 Die schwache Kraft Ladung: schwache Ladung (hier: I3)
Arten: 1 Ladungsart Botenteilchen: W-, Z0, W+ Eigenschaften: tragen selber schwache Ladung: I3 = -1, 0, Masse: m = 80 bzw. 90 GeV Teilchen Elektron up-Quark down-Quark Neutrino I3 -1/2 +1/2

13 Die starke Kraft Ladung: Farbladung/ starke Ladung
Arten: 3 Ladungsarten; Farbe und Antifarbe Botenteilchen: 8 Gluonen Eigenschaften: tragen selbst je eine Farbe und eine Antifarbe masselos : m=0 Besonderheiten: Endliche Reichweite ca. 1 fm Halten Hadronen zusammen Makroskopisch nicht beobachtbar, außer im Radioaktiven α-Zerfall rot + grün + blau = weiß

14 u d u d u d Die starke Kraft
Alle Quark Sorten kommen in 3 verschiedenen Versionen vor: u d up down u d u d rot + grün + blau = weiß Quarks verbinden sich, um „farblose/weiße“ Teilchen zu bilden Baryonen: rot + grün + blau = weiß Mesonen: Farbe + Antifarbe = weiß

15 4 fundamentale Wechselwirkungen
Schwache Kraft - β-Zerfall - pp-Fusion Schwache Ladung W+, W-, Z0 Elektromagnetismus - TV, PCs - Magnete - e- e+ Erzeugung Elektrische Ladung Photon Gravitation (Schwerkraft) - Erdanziehung Masse Starke Kraft - Quark-Bindung Farbladung Gluonen

16 W+ W- W-Zerfälle Das W-Teilchen ist nicht stabil e+ μ+ q e- μ- q
Es wandelt sich nach 3 · s in andere Teilchen um e+ μ+ q e- μ- q W+ W- νe νμ q νe νμ q

17 … soweit zur Theorie. Aber wie arbeiten nun die Teilchenphysiker?

18 Prinzip: Teilchenphysik = Hochenergiephysik
𝛥𝑥𝛥𝑝≥ℏ/2 Δx Heisenberg'sche Unschärferelation 𝐸=𝑚𝑐² Einstein (Relativitätstheorie)

19 Teilchenbeschleuniger = Mikroskope für Teilchen
Wurfgeschoß (Projektil)  Zielobjekt  Nachweis (Detektor) „Auflösungsvermögen“ : Treffgenauigkeit << Größe der Strukturen Projektilgröße << Größe der Strukturen >0,15µm Treffgenauigkeit: 0,2 fm bei E = 1 GeV = 1000 MeV 200 fm bei E = 1 MeV = 1000 keV 0,2 µm bei E = 1 eV

20 Wurfgeschoss: Basketbälle

21 Wurfgeschoss: Tennisbälle

22 Wurfgeschoss: Murmeln
Nichts wie weg!

23 Wie funktioniert ein Teilchenbeschleuniger?
Linearbeschleuniger Ringbeschleuniger Vorteil: keine Synchrotronstrahlung Vorteil: Teilchen können mehrfach genutzt werden

24 Beschleuniger – Der Large Hadron Collider (LHC) am CERN
Protonen, Schwerpunktsenergie 7 TeV Protonen kreisen 11000mal pro Sekunde durch den Ring In Betrieb seit 2010 Betriebstemperatur: 1.9 K (Universum 2.7 K Hintergrundstrahlung)

25 Die Augen der Teilchenphysik: Detektoren
Zwiebelschalenartiger Aufbau verschiedener Komponenten Jede Teilchenart hinterlässt bestimmte Kombination von Signalen in den Komponenten

26 Wie 240 Elefanten auf Kollisionskurs
LHC Energie Gespeicherte Energie der beiden Protonenstrahlen: 2 x 350 MJ * Lichtgeschwindigkeit Wie 240 Elefanten auf Kollisionskurs 120 Elefanten mit 40 km/h Nadelöhr: 0.3 mm Durchmesser Protonstrahlen am Kollisionspunkt: 0.03 mm Durchmesser

27 ATLAS-Detektor am LHC Größter Detektor am LHC (25 m Durchmesser, 45 m lang) Aufgaben: Suche nach dem Higgs, Supersymmetrie, Extra-Dimensionen, etc. 3000 Physiker aus 38 Ländern von 174 Universitäten forschen in der ATLAS-Kollaboration

28 Zusammenfassung Die unterschiedlichen Ladungen bewirken unterschiedliche Kräfte zwischen Teilchen Sie erklären auch das unterschiedliche Verhalten in den Detektoren sowie die Bildung von Hadronjets aus Quarks

29 Specials: Higgs, Dunkle Materie, Neutrinos
Was kommt nach dem Standardmodell?

30 Higgs-Mechanismus Erklärung für die Masse der Elementarteilchen:
Kopplung an allgegenwärtiges Higgs-Feld Anregung des Higgs-Feldes → Existenz eines Teilchens: Higgs-Boson Theorie wurde eingeführt von Peter Higgs Bestätigung durch Fund des Higgs-Bosons möglich

31 Dunkle Materie / Dunkle Energie
Diskrepanz zwischen beobachteter und erwarteter Rotationsgeschwindigkeit der Sterne in unserer Galaxie → Erklärung mit Hilfe von dunkler (nicht sichtbarer) Materie

32 Das Neutrino 1914 Chadwick b-Zerfall: n  p + e-
Pauli (1930) postuliert neues Teilchen: Neutrino ν Elektrisch neutraler Partner des Elektrons sehr leicht erst für masselos gehalten Es befinden sich in jedem von uns ungefähr 30 Mio. Neutrinos vom Urknall. schwach wechselwirkend: von schaffen Erddurchquerung


Herunterladen ppt "Den Elementarteilchen auf der Spur"

Ähnliche Präsentationen


Google-Anzeigen