Fachausschuß für Kern- und Teilchenphysik 55. Jahrestagung der Österreichischen Physikalischen Gesellschaft Wien, 28. Sep. 2005 Claudia-Elisabeth Wulz.

Slides:



Advertisements
Ähnliche Präsentationen
Dunkle Materie im Labor
Advertisements

Der Physik Nobelpreis 2006 John C. Mather (links) und George Smoot (rechts). 1.Vorlesung Teilchenphysik WiSemester 06/07 Michael Kobel.
Günter Quast Karlsruhe, 4. Oktober 2004 Institut für experimentelle Kernphysik 1 Die großen Zukunftsprojekte: Der Large Hadron Collider (LHC) und ein Elektron-Positron-Linearbeschleuniger.
Flavor Physik in Randall-Sundrum-Modellen
Supersymmetrie Ein Vortrag zum Seminar
Physik jenseits des Standardmodells
Gliederung Was ist SUSY Motivation für SUSY
-Der Large Hadron Collider LHC -
Martin zur Nedden, HU Berlin 1 Physik an Hadron-Collidern, WS 2006/2007 Kap 4: Physik mit schweren Quarks Grosse Wirkungsquerschnitte Hadron-Massen und.
Martin zur Nedden, HU Berlin 1 Physik an Hadron-Collidern, WS 2006/2007 Kap 1, Intermezzo: Beispiele von hadronischen Kollisions- Experimenten D0 am Tevatron.
Dem Higgs-Boson auf der Spur
Suche nach Supersymmetrie am LHC
Suche nach dem Higgs und die Experimente am LHC
Suche nach dem Higgs-Teilchen am LHC
Zukünftige Neutrinoexperimente und deren theoretische Implikationen
Seminar WS 2003/04 RWTH: Neutrinos
G. Flügge, T. Hebbeker, K.Hoepfner, J. Mnich, W. Wallraff
Elementarteilchenphysik/Astroteilchenphysik Seminarthemen Organisation
Moderne Methoden der Teilchen- und Astroteilchenphysik
Ties Behnke: TESLA - ein Weg zur Weltformel? 1 Tag der Wissenschaft - Berlin: TESLA Licht der Zukunft Teilchenphysik bei TESLA ein Weg zur.
Jenseits der Antimaterie
Von Quanten, Quarks und der spanischen Königin Ein Ausflug an die Grenzen der Physik Peter Schleper Hamburg,
Elementar und Unteilbar? Revolutionen der Teilchenphysik
CMS Compact Muon Solenoid
Der Elektron-Positron Linearcollider TESLA
7. Massen 7.1. Das Higgs-Boson Spontane Symmetriebrechung
Elementarteilchen aus dem Urknall
V. Neutrinomassen und Neutrinooszillationen 5.1. Neutrinooszillationen
10. Massen Das Higgs-Boson Spontane Symmetriebrechung
Achim Stahl 18-April-2006 Seminar Neutrinos. Konsistente Beschreibung der Welt der Elementarteilchen experimentell vielfach überprüft muß für massive.
Thomas Schörner-Sadenius, Georg Steinbrück (Peter Schleper)
Kern- und Teilchenphysik 2
Schwache Zerfälle + Teilchenoszillationen
Seminarvortrag von Florian Senger
1 Seminar zu Experimentelle Methoden der Teilchenphysik Der Trigger von ATLAS - Wolf Behrenhoff, Der Trigger im ATLAS-Experiment – LHC Grundlagen.
WIMPS, MACHOS, CHARM und STRINGS Claudia-Elisabeth Wulz
Standardmodell-Higgs
SU(2)L x U(1)Y Eichinvarianz war für die Bestimmung der Lagrangefunktionen der QED und QCD wesentlich. Für die schwache Wechselwirkung ist der Fall komplizierter,
Programm – 09.50: Begrüßung und Umfrage – 11.30: Vorträge
Meilensteine der Teilchenphysik
Meilensteine der Teilchenphysik
Das Higgs-Teilchen - Der letzte Baustein im Standard Modell
Physik am Large Hadron Collider
1. Physik der Elementarteilchen.
3. Was bringt die Zukunft ? Was ist spontane Symmetriebrechung?
Die experimentelle Untersuchung der CP-Verletzung (Verletzung der Ladungs-Paritäts-Symmetrie)  Manfred Jeitler Institut für Hochenergiephysik der Österreichischen.
Das magnetische Moment der Leptonen
Reise in die subatomare Welt
Fundamentale Fragen der Teilchenphysik
CMS - Trigger Kuratorium Institut für Hochenergiephysik Wien, 14. März 2003 vorgestellt von Claudia-Elisabeth Wulz.
Perspektiven der experimentellen Hochenergiephysik - Teil Claudia-Elisabeth Wulz Institut für Hochenergiephysik der Österreichischen Akademie.
Fachausschuß für Kern- und Teilchenphysik 55. Jahrestagung der Österreichischen Physikalischen Gesellschaft Wien, 28. Sep Claudia-Elisabeth Wulz.
Besuch im Teilchenzoo Claudia-Elisabeth Wulz Juli 2011
Literatur über Neutrinos
Physik am LHC und erste Resultate
Herbstschule für Hochenergiephysik Maria Laach September 2010Teil 4 Physik am LHC und erste Resultate Claudia-Elisabeth Wulz Institut für Hochenergiephysik.
Das Top-Quark als Schlüssel zur LHC-Physik VH-NG-400
Günther Dissertori CERN , EP-Division Lehrer Seminar Februar 2000
4. Horizonte der Teilchenphysik.
Claudia-Elisabeth Wulz Institut für Hochenergiephysik, Wien
Teil 7: Offene Fragen der Teilchenphysik
der Elementarteilchen
WYP 2005 European Masterclass Das Standardmodell Standardmodell der Elementarteilchenphysik.
Freitag, 28 September 2007 Prof. G. Dissertori
Teilchenphysik-Quiz Präsentationstitel, Autor.
Neutrinos Woher wissen wir eigentlich, dass es mehr als ein Neutrino gibt?
Fundamentale offene Fragen der Hochenergiephysik
Standardmodell. 224 Was wissen wir bisher? Nukleonen bestehen aus (3) spin ½ Teilchen mit relativ geringer Masse.
Das Standard Modell der Teilchenphysik Stand und offene Fragen P. Schmid Innsbrucker Vorbereitungstreffen für den CERN Besuch 16. Jänner 2006.
SUPER SYMMETRIE. WAS IST SUPER SYMMETRIE (SUSY) VORTEILE DES SUSY MODELS PROBLEME DES SUSY MODELS EXPERIMENTELE ERGEBNISSE & NACHWEISMÖGLICHKEITEN FÜR.
 Präsentation transkript:

Fachausschuß für Kern- und Teilchenphysik 55. Jahrestagung der Österreichischen Physikalischen Gesellschaft Wien, 28. Sep Claudia-Elisabeth Wulz Institut für Hochenergiephysik der ÖAW & TU Wien Fundamentale offene Fragen der Hochenergiephysik

Wien, Sep C.-E. Wulz2 Teilchenphysik am Ende des 20. Jhdts. Das Standardmodell wurde bis O(100 GeV) eindrucksvoll experimentell bestätigt, teilweise mit höchster Präzision!

Wien, Sep C.-E. Wulz3 Teilchenphysik am Ende des 20. Jhdts. Das Standardmodell kann jedoch nur eine beschränkte Gültigkeit haben, da: - Gravitation nicht inkludiert - keine Lösung des Hierarchieproblems - keine Vereinheitlichung der Kopplungskonstanten - neue Phänomene nicht enthalten (Neutrinomassen, etc.) - etc. Energieskala für Gültigkeit des Standardmodells: < M Planck ~ GeV (Gravitationseffekte werden signifikant) Das Standardmodell muß erweitert werden! Mehr als das: eine Revolution hat sich angebahnt … !

Wien, Sep C.-E. Wulz4 Astrophysik - Teilchenphysik 1998: Inflationäre Expansion des Universums aus Beobachtungen von Ia-Supernovae. Erklärbar durch nicht verschwindende kosmologische Konstante bzw. durch nicht verschwindende Komponente dunkler Energie. Hubble-Diagramm z.B. Perlmutter et al. astro-ph/ Bester Fit: M =0.28 =0.72 SN1987A M + = 1 … Universum ist flach

Wien, Sep C.-E. Wulz5 Messung kosmologischer Parameter Heute z.B.: WMAP (NASA Wilkinson Microwave Anisotropy Probe) SDSS (Sloan Digital Sky Survey) tot (total) = (matter) = (baryons) = (hot dark matter) < (95% C.L.) -> Bekannte baryonische Materie: ~ 4% -> Cold dark matter: ~ 23% -> Dark energy: ~ 73% C.L. Bennett et al., 2003, ApJS, 148, 1

Wien, Sep C.-E. Wulz6 Offene Fragen Woher kommen die Massen der bekannten Teilchen? (Wie) kann das Standardmodell erweitert werden? Gibt es mehr als 3 Lepton/Quark-Generationen? Welche Rolle spielen massive Neutrinos? Wie kann man das Confinement verstehen? Was ist die dunkle Materie (schwere SUSY-Teilchen, …?) Können alle Kräfte vereint werden? Wie geht die Gravitation ein? Was ist die dunkle Energie (Einsteins kosmologische Konstante, …?) Gibt es zusätzliche Dimensionen? Wie entstand das Universum? (Warum) ist das Universum flach? (Warum) ist die Antimaterie verschwunden?

Wien, Sep C.-E. Wulz7 Werkzeuge zur Beantwortung Experimente an Beschleunigern z.B. FNAL: Tevatron BNL: RHIC DESY: HERA CERN: Large Hadron Collider (LHC) ?: International Linear Collider, CLIC Experimente in Untergrundlaboratorien Raumsonden Terrestrische Teleskope Experimente an Kernreaktoren SDSS Gran Sasso ATLAS KamLAND WMAP

Wien, Sep C.-E. Wulz8 Ursprung der Masse Elektromagnetische und schwache Wechselwirkung sind durch fundamentale Symmetrien verbunden, dennoch manifestieren sie sich in verschiedener Weise. m = 0 m W ~ 80 GeV/c 2 m Z ~ 91 GeV/c 2 Erklärung: Durch Interaktion mit einem Quantenfeld erhalten Teilchen Masse. Einfachstes Modell hat nur ein neutrales, skalares Higgs-Boson. v = 246 GeV/c 2 … Vakuumerwartungswert des Higgsfeldes … unbekannt -> Higgsmasse von der Theorie nicht vorhergesagt! Warum sind die Massen so verschieden? Higgs-Mechanismus

Wien, Sep C.-E. Wulz9 Status der Higgsmassenbestimmung Direkte Suche bei LEP 2000 beendet. Resultat: m H > GeV/c 95 c.l. Aus precision electroweak fits (LEP, SLD, CDF, D0) folgt: 1. Higgs, wenn Masse ~ 114 GeV/c 2 ! Dominanter Prozeß bei LEP: e + e - -> HZ Beinhaltet neue Topmassenmessung von 174 GeV/c 2 und Strahlungskorrekturen m H : LEP-2 Grenzwert von 114 GeV c 2 inkludiert : Wahrscheinlichster Wert: m H = ( ) GeV/c 2 m H < 219 GeV/c 95 c.l.

Wien, Sep C.-E. Wulz10 Higgssuche am Tevatron In den nächsten Jahren wird Tevatron den Higgsmassenbereich weiter einschränken. Bis 2009 werden ca. 4 bis 8 fb -1 integrierte Luminosität erwartet -> Tevatron kann Higgs bis zumindest ~ 130 GeV/c 2 ausschließen. Eine 5 - Entdeckung weit über den bei LEP erforschten Bereich scheint jedoch nicht möglich. Fermilab-Pub-03/320-E 8 fb -1 4 fb -1

Wien, Sep C.-E. Wulz11 Large Hadron Collider LHC SPS CMS TOTEM ATLAS ALICE Start: Juni 2007

Wien, Sep C.-E. Wulz12 ATLAS Barrel Toroid Barrel Tile Calorimeter

Wien, Sep C.-E. Wulz13 CMS Barrel Magnetjoch mit Müonkammen

Wien, Sep C.-E. Wulz14 Higgssuche bei LHC Verzweigungsverhältnisse 80 GeV, H -> bb 130 GeV ZZ(*) -> 4 ( l = e, ) 500 GeV ZZ -> Jets 500 GeV ZZ -> GeV WW-> + + Jets 800 GeV ZZ-> Jets - Bevorzugte Suchkanäle Higgs koppelt proportional zur Masse!

Wien, Sep C.-E. Wulz15 Higgs bei CMS

Wien, Sep C.-E. Wulz16 Higgssignifikanzen am LHC Der gesamte vernünftige Higgsmassenbereich kann überspannt werden. Eine 5 - Entdeckung ist in vielen Fällen bereits möglich bei 2 fb -1 (einige Monate Laufzeit bei Luminosität 2x10 33 cm -2 s -1 )

Wien, Sep C.-E. Wulz17 Supersymmetrie Standardmodell csdu,,, SUSY Um bei hohen Energien unnatürlich große Strahlungskorrekturen zur Higgsmasse zu vermeiden, fordert man zu jedem Fermion des Standardmodells einen supersymmetrischen Boson-Partner und vice versa.

Wien, Sep C.-E. Wulz18 Supersymmetrie - Suchstrategie Suche nach Abweichungen vom Standardmodell leicht! Messung der SUSY Massenskala M SUSY leicht! SUSY SM Effektive Masse M eff = E T miss + E TJet1 + E TJet2 + E TJet3 + E TJet4 Hinchliffe et al., hep-ph/ Beispiel: Beispiel: mSUGRA m 0 = 100 GeV, m 1/2 = 300 GeV tan = 10, A 0 = 0, > 0 Verschiedene SUSY-Modelle mit annähernd gleicher Masse des leichten Higgs

Wien, Sep C.-E. Wulz19 SUSY - Parametermessungen Messung der Modellparameter (z.B. Massen, Kopplungen, Breiten, Spins) schwierig! SUSY Beispiel: Beispiel: Endpoint-Analysen von Kaskadenzerfällen

Wien, Sep C.-E. Wulz20 Neutrinos Sicher ist: es gibt massive Neutrinos! Jedoch sind viele Fragen offen ! Einige davon: Welche absoluten Werte haben die Neutrinomassen? Wie ist die Relation von Flavoreigenzuständen zu Masseneigenzuständen (Mixing)? Wie ist die Massenhierarchie? Gibt es schwere Neutrinogenerationen? Sind Neutrinos Dirac- oder Majoranateilchen?

Wien, Sep C.-E. Wulz21 Neutrino-Mixing l = U li i U : Pontecorvo-Maki-Nakagawa-Sakata (MNSP) Matrix Unitäre Matrix mit 3 Winkeln ( 12, 13, 23 ) und 1 CP-verletzenden Phase Im Gegensatz zum Quark-Mixing ist Neutrino-Mixing groß! e 13 und weitgehend unbekannt! e U = - atmosph., solar, Beschl., Reaktoren (Dirac)

Wien, Sep C.-E. Wulz22 Das solare Neutrinodefizitproblem hep-ph/ m eV 2, sin …. Problem (fast) gelöst! ApJ Letters 621, L85 (2005) Bahcall: … established as early as 1996 that the solution of the Solar Neutrino Problem lay in new particle physics, not new astrophysics …

Wien, Sep C.-E. Wulz23 Neutrinomessungen am SNO - nur e - mißt totalen 8 B -Fluß der Sonne - gleiche Wirkungsquerschnitte für alle aktiven -Flavors NC xx npd - hauptsächlich sensitiv für e, aber auch, CC e-e- ppd e ES e-e- e-e- x x

Wien, Sep C.-E. Wulz24 Bestätigung der Oszillationshypothese Oszillationen Neutrinozerfall Dekohärenz Superkamiokande 2004 hep-ex/ Überlebenswahrscheinlichkeit für : P( –> ) = 1 - sin sin 2 ___________________________ 1.27 m 23 2 (eV 2 ) L (km) E (GeV) sin > 0.90 (90% C.L.) eV 2 < m 23 2 < eV 2 (90% C.L.) hep-ex/ KamLAND 2004 Superkamiokande:

Wien, Sep C.-E. Wulz25 Absolute Neutrino-Massenmessungen dN/dE = K x F(E,Z) x p x E tot x (E 0 -E e ) x [ (E 0 -E e ) 2 – m 2 ] 1/2 MAINZ-Experiment 3 H 3 He + e + e E e -E 0 [eV] Rel. Rate [a.u.] m = 0eV m = 1eV Theoretisches -Spektrum nahe dem Endpunkt E 0 C. Kraus et. al., Eur. Phys. J. C 40, 447 (2005) Karlsruhe Tritium Neutrino Experiment KATRIN ab 2008: Sensitivität um 1 Größenordnung besser m e < 2.3 eV/c 2 (95%CL) m e 2 = (-0.6 ± 2.2 stat ± 2.1 sys ) eV 2 /c 4

Wien, Sep C.-E. Wulz26 Absolute Neutrino-Massenskala U Maj = U Dirac ( e i e i 3 ) Wenn Neutrinos zu leicht (leichter als ca. 0.3 eV) für eine experimentelle Messung sind, bleibt nur der neutrinolose doppelte Beta-Zerfall! Dieser ist nur möglich, wenn Neutrinos massive Majoranateilchen ( = ) sind. Die Zerfallsrate hängt direkt mit den Massen und Mixings der Neutrinos zusammen.

Wien, Sep C.-E. Wulz27 Neutrinoloser doppelter Betazerfall n n p p e _ _ e z.B. 76 Ge 76 Se + 2e - + (2 ) (Heidelberg-Moskau-Experiment) Signal: monochromatische Linie am Endpunkt _ 2 E(2e) e n p p e n

Wien, Sep C.-E. Wulz28 Zusammenfassung In den letzten Jahrzehnten wurde das Verständnis der Teilchenphysik entscheidend verbessert. Jedoch …. neue, fundamentale Fragen stellten sich! Die Teilchenphysik, die Astrophysik und die Kosmologie werden gemeinsam zu ihrer Beantwortung beitragen. WIR LEBEN IN INTERESSANTEN ZEITEN!