Licht sind kleine Teilchen 6. Das Photon Welle und Teilchen Huygens: (19. Jahrh.) Licht ist eine Welle Newton: (18. Jahrh.) Licht sind kleine Teilchen
Das Photon: Teilchen/Welle Teilchenbild erklärt: Photoelektrischen Effekt E = h Hohlraumstrahlung (diskrete Strahler) Comptoneffekt E = h , p=h/c Wellenbild erklärt: Interferenz Beugung Young Doppelspalt Schatten!
Thomas Young Doppelspalt (1801) Was beobachtet man?
auf einzelne Photonen/sec Helligkeitschwankungen Einzelphotonen- detektor Reduziere Intensität auf einzelne Photonen/sec Helligkeitschwankungen http://www.quantum-physics.polytechnique.fr/en/index.html
Verbindung Teilchen-Welle: Photonen: Photonendichte = Intensität/ (c h ) Ebene Welle: Elektrische Feldstärke cos(/2 t) Intensität E2 Wahrscheinlichkeit für ein Photon zu finden Quadrat der Amplitude
Wahrscheinlichkeitsverteilung der Photonen Intensität E2 Wahrscheinlichkeitsverteilung der Photonen Fragen: Wenn nur 1 Teilchen unterwegs ist, was interferiert da? Zurückverfolgen der Photonen: durch welchen Schlitz? Wie kommen die Photonen in den Schatten? Impulserhaltung: wo kommt der Tranversalimpuls her?
Doppelspalt: Was passiert, wenn man eine Seite zuhält?
Schliesse 1 Schlitz NACHDEM das Teilchen amittiert wurde: Doppelspalt: Was passiert, wenn man eine Seite zuhält? Schliesse 1 Schlitz NACHDEM das Teilchen amittiert wurde:
Delayed Choice: Interferenz z.B. Auslöschung
Schalte Spiegel aus NACHDEM der Puls durch den Teiler ist Delayed Choice: Schalte Spiegel aus NACHDEM der Puls durch den Teiler ist Keine Interferenz!
QM: Heisenbergsche Unschärferelation x px ħ Bahnen von Teilchen sind eine klassiche Vorstellung Klassisch: Impuls und Ort jederzeit genau bestimmt QM: Heisenbergsche Unschärferelation x px ħ
Klassische Bahn eines Teilchen QM Impuls ist NICHT dx/dt Da wenn x scharf p unscharf Vorhersage unscharf Zeit Ort x Px=mdx/dt Zeit Ort x Punkt im Phasenraum zu einem Zeitpunkt Impuls px Ort x Impuls px Ort x t als Parameter t1 t2 t3 x px ħ
7.1 Erzeugung von Elektronen 7. Das Elektron 7.1 Erzeugung von Elektronen Thermische Emission e- Boltzmann Geschwindigkeitsverteilung Standard Verfahren: Fernsehröhren Oszilloskopröhren Spezielle Beschichtung für niedrige Austrittsarbeit hilft Ekin > eUwork
Photoeffekt an Metalloberflächen 7. Das Elektron 7.1 Erzeugung von Elektronen Photoeffekt an Metalloberflächen e- h Emax= h- eUwork
Sekundärelektronenemission aus Festkörperoberflächen 7. Das Elektron 7.1 Erzeugung von Elektronen Sekundärelektronenemission aus Festkörperoberflächen e- e- e- e-
Anwendung in Photonen, Ionen und Elektronendetektoren 7. Das Elektron 7.1 Erzeugung von Elektronen Sekundärelektronenemission aus Festkörperoberflächen Anwendung in Photonen, Ionen und Elektronendetektoren
7.1 Erzeugung von Elektronen 7.2. Größe des Elektrons 7. Das Elektron 7.1 Erzeugung von Elektronen 7.2. Größe des Elektrons Klassische Elektronenradius: Kugelkondensator: Ruheenergie = Elektrostatische Energie r=2.8 10-15m Theoretische Größe, aber Comptonquerschnitt
7.1 Erzeugung von Elektronen 7.2. Größe des Elektrons 7. Das Elektron 7.1 Erzeugung von Elektronen 7.2. Größe des Elektrons Elektron ist ein Punktteilchen! Elektron-Elektron Streuung <10-18 m (1/1000 proton) Klassische Elektronenradius: Kugelkondensator: Ruheenergie = Elektrostatischer Energie r=2.8 10-15m Theoretische Größe, aber Comptonquerschnitt
7.1 Erzeugung von Elektronen 7.2. Größe des Elektrons 7. Das Elektron 7.1 Erzeugung von Elektronen 7.2. Größe des Elektrons 7.3. Ladung des Elektrons Phys.Rev. 2, 109(1913)
Prinzip des Millikan Öltröpfchen Versuchs - - - - - - - - - - - - - - + + + + + + + + + + + + + + - n*e*E - m*g
Messe: Steiggeschwindigkeit (Ladung, Radius, Viskosität) Flüssikeitsmantel zur Temperaturstabilisierung (Viskosität ist temperaturabhngig) Ölzerstäuber Röntgenröhre zum Ionisieren Beleuchtung Messe: Steiggeschwindigkeit (Ladung, Radius, Viskosität) Fallgeschwindigkeit (Radius, Viskosität)
Noch heute verwendete Methode Elementarladung: 1.6021773 10-19 Coulomb Es gibt keine freien Teilchen mit nichtganzzahligen Vielfachen Quarks 1/3 2/3 Ladung Andere Methoden: z.B. Elektronen abzählen
Physikalisch Technische Bundesanstalt: „Pumpe“ für einzelne Elektronen gekühlt! http://www.ptb.de/de/org/2/24/242/r-pump-deu.htm
7. Das Elektron 7.1 Erzeugung von Elektronen 7.2. Größe des Elektrons 7.3. Ladung des Elektrons 7.4. Spezifische Ladung e/m Bestimmung 1,7589 · 108 C/g Massenspektrometer Fallen (über Frequenzmessung) e/m Geschwindigkeitsabhängig! Relativistische Massenzunahme schon vor der speziellen Relativitätstheorie entdeckt m = m0 / 1-v2/c2 1keV v/c=0.063 4*10-3 Masse 1MeV v/c=0.942 m=3m0
Ruhemasse des Elektrons: 9,1091 · 10-28 g
1924: De Broglie Wellenlänge eines Teilchens: = h/p = h/ 2m0Ekin 8 Teilchen als Wellen Louis de Broglie had the boldness to maintain that not all the properties of matter can be explained by the theory that it consists of corpuscles (C.W. Oseen bei der Würdigung de Broglies zur Verleihung des Nobelpreises) 1924: De Broglie Wellenlänge eines Teilchens: = h/p = h/ 2m0Ekin Einstein (1905), Annalen der Physik 17, 132: für Photonen
1924: De Broglie Wellenlänge eines Teilchens: 8 Teilchen als Wellen 1924: De Broglie Wellenlänge eines Teilchens: = h/p = h/ 2m0Ekin Beispiel 1: 100 g Ball, 100 km/h 2*10-34 m Beispiel 2: Elektron 100eV 1.2*10-10 m vgl: Atom 10-10 m, Kern 10-15m
8.1. Davisson Germer Experiment (1927) Elektronen als Welle 8 Teilchen als Wellen 8.1. Davisson Germer Experiment (1927) Elektronen als Welle Bragg Reflektion von Elektronen: Ganze Zahl d*sin() d Bragg Bedingung für konstruktive Interferenz: 2d sin() = m * Gitterabstand Wellenlänge
8 Teilchen als Wellen 8.1. Davisson Germer Experiment (1927) Elektronen als Welle Heizdraht (Elektronenquelle) Spannung -> Elektronenenergie Elektronennachweis Nickel Oberfläche
Davisson Germer Experiment (1927) Bragg Reflektion von Elektronen:
Davisson Germer Experiment (1927) Vakuumröhre Nickeloberfläche muss “gut” sein Vakuum für Elektronenausbreitung
the results of the Davisson Germer experiment were discovered by accident. While working at Bell Labs during the mid 1920's C.J. Davisson and L.H. Germer were researching electron energies scattered from metal surfaces. Their discovery was found when they were shooting electrons at a piece of nickel in a vaccum. One day the nickel became oxidized after their vacuum had sprung a leak. They heated up the nickel in order to get rid of the oxidization. Now when they did the experiment, their diffraction pattern displayed maxima and minima at specific angles. Davisson and Germer realized that heating up the nickel caused it to crystallize and the regular spacing between the atoms of the crystal acted like a grate to cause the diffraction in the same way as Young's Double Slit Experiment. This experiment proved Louis de Broglie's theory that matter behaves like waves. http://www.upei.ca/~phys221/jdm/ http://www.acolyte.co.uk/origins/DandG.html