Chaos und die Entstehung von Planetensystemen

Slides:



Advertisements
Ähnliche Präsentationen
Das leben keplers geboren am in der Stadt Weil in Baden-Württemberg er war ein kränkliches Kind grosse mathematische Fähigkeiten Lateinschule.
Advertisements

Der Urknall und die ersten drei Minuten.
Kleinkörper Unter den Kleinkörpern werden Asteroiden, Kometen und Meteoriten zusammengefasst, die direkt die Sonne umkreisen und dabei nicht ausreichend.
Die Solar-Stellar Connection K.G.Strassmeier. Drei Gründe warum wir sonnenähnliche Sterne erforschen sollten Sterne haben Planeten ! Nach Hipparcos war.
Die Urknalltheorie „Big Bang“
Ordnung und Chaos im Sonnensystem
Die Suche nach einer zweiten Erde (?)
Unser modernes kosmologisches Weltbild
Dynamik komplexer Systeme
Vorlesung 1: Roter Faden: 1.Ausblick 2.Literatur
Galaxien, Quasare, Schwarze Löcher Dr. Knud Jahnke Max-Planck-Institut für Astronomie.
Mechanik der Teilchensysteme
Das Schicksal des Universums
Physik am Samstagmorgen 2007 – Physik und...
60. Geburtstag von Manfred Stöckler Bremen, 23. Juni 2011
Der Goldene Schnitt in der Natur
Ordnung und Chaos im Sonnensystem
die Formel des Jahrhunderts
Der Kovalevskaya-Kreisel
Schönheit und Chaos in der Kreiseldynamik
Chaos im Sonnensystem Im Jahr 1925 präsentierte Elis Strömgren in Kopenhagen diese Grafik als Resultat von 15 Jahren numerischer Arbeit seiner ca. 50 Mitarbeiter.
Was haben Fraktale mit Chaos zu tun?
Auf Messers Schneide (engl
Physik für Mediziner, Zahnmediziner und Pharmazeuten SS2000 9
nach einer zweiten Erde
Kosmische Sternexplosionen
Sind physikalische Gesetze schön?
Wozu dienen Sternbilder? Zur schnellen Orientierung am Sternenhimmel!
Friedmann Modell des Universums
Wovon Astronomen träumen...
Unser Universum Franz Embacher Institut für Theoretische Physik
Unser Universum Heinz Oberhummer
T Tauri Sterne Allgemeines über T Tauri Vorhauptreihenentwicklung
VOM MIKRO- ZUM MAKROKOSMOS
Kometen im Sonnensystem
Die dunkle Seite der Kosmologie Franz Embacher Vortrag im Rahmen von UNIorientiert Universität Wien, 11. September 2008 Fakultät für Physik Universität.
Blick in die Kosmologie Strahlung – Materie – Energie.
Die Geburt unseres Planetensystems
Chaos im Sonnensystem (Kurzüberischt)
Schwerkraftmonster in galaktischen Zentren: Wie „wiegt” man Schwarze Löcher? Nadine Neumayer.
Astronomie-Kurs 2-stündig.
Die Schwerkraft(Gravitation)
Chaos.
Die Entstehung des Universums
Spiralgalaxien.
deterministisches chaos
Unser Kosmos Präsentation 04:40.
Besuch des Vortrages: Hubble Weltraumteleskop von Claude Nicollier
Dimensions of Space chello.at Visualization of Legal Theory Space 01.
Schwarze Löcher Stefan Schöberl.
Kapitel VI: Der Aufbau der Sterne
Die Natur der Zeit aus physikalischer Sicht von Jörn Schipper
Die „Hohmann-Bahn“ oder der Flug zum Jupiter
Die Suche nach Exoplaneten
Elemente und Aspekte des Unterrichts in der Sek.II
ASTRO QUIZ September Liebe Kollegen, Mitglieder und Besucher Es gibt wieder unser heiteres Astro Quiz. Fragen rund um Astronomie und Raumfahrt. Viel Aufzeigen,
deterministisches chaos
Gravitationstheorie: nach Newton und nach Einstein
Planeten außerhalb des Sonnensystems - Die Suche nach der zweiten Erde
Gekrümmter Raum, gekrümmte Zeit!
Astronomie Die Kepler‘schen Gesetze
L’astronomie / Die Astronomie Place de la Terre dans l’Univers  grand débat * Platon /Aristote / Ptolémée  Terre = centre du monde Les astres tournent.
Physik – Klasse 11 Kreisbewegungen Geozentrisches Weltbild
Fotos Sterne, Planeten, Galaxien
Sterne und Sternentwicklung
Extrasolare Planeten.
Referent: Peter Stern Datum: MS Rain Klasse M8b
Planetensysteme Vom geozentrischen zum heliozentrischen System
 Präsentation transkript:

Chaos und die Entstehung von Planetensystemen Herrn Dr. Horst Binnenbruck Peter H. Richter - Institut für Theoretische Physik – Universität Bremen

Spannende Zeiten Wir beobachten die Geburt neuer Sternsysteme extrasolare Planetensysteme Das Mosaikbild des Orionnebels wurde von Mark Mc Caughrean (MPIA Heidelberg) und C. Robert O‘Dell (Rice University) mit der Wide Field Planetary Camera des HST aus 11 Einzelaufnahmen erstellt. Gegen den Hintergrund des heißen Nebelgases, das in den Emissionslinien des ionisierten Sauerstoffs (blau), Wasserstoffs (grün) und Stickstoffs (rot) leuchtet, heben sich dichte zirkumstellare Gas- und Staubscheiben als dunkle Schatten ab, die junge Sterne umgeben. Die Scheibe um den T-Tauri-Stern AB Aurigae könnte ein Entwicklungsstadium zwischen einer protoplanetaren Scheibe und einem frühen Planetensystem sein. Peter H. Richter - Institut für Theoretische Physik - Universität Bremen – 6. April 2001

Orion Nebel Animation "Flying" into the Orion Nebula This animation was produced by Walt Feimer in the Astronomy Visualization Laboratory at the Space Telescope Science Institute. It begins with a "backyard" view of the sky around the constellation Orion (by Skip Westphal, STScI) and a more detailed view of the Orion Nebula, also known as M42 and NGC 1976, taken with the 4-meter telescope at Kitt Peak National Observatory. A spectacular cloud of gas surrounds several very hot stars in the star cluster deep within the nebula. The nebula's constituent gases include hydrogen, helium, oxygen, carbon, neon, nitrogen, sulphur, argon, and chlorine; the density of these gases is above the critical limit required for stars to form within the nebula. Visible to the naked eye as the middle "star" in the "sword" of the constellation Orion, the nebula is located 1500 light years from Earth. An image taken with the Wide Field Planetary Camera 2 aboard the Hubble Space Telescope (C.R. O'Dell, Rice University) provides a more detailed view of the Nebula. The final sequence, from details of the HST image, show several protoplanetary disks or "proplyds" and finally a single dark disk surrounding a central star.

Protoplanetarische Disks in Orion und junge Sterne im Taurus Proplyds in Orion nebula HST Wide Field and Planetary Camera 2 Young stars in Taurus HST Near Infrared Camera Protoplanetarische Disks in Orion und junge Sterne im Taurus Links: These are Hubble Space Telescope images of four newly discovered protoplanetary disks around young stars in the Orion nebula, located 1,500 light-years away. Gas and dust disks, long suspected by astronomers to be an early stage of planetary formation, can be directly seen in visible light by Hubble. Disks around young stars (also known as circumstellar or protoplanetary disks) are thought to be made up of 99% gas and 1% dust. Even that small amount of dust is enough to make the disks opaque and dark at visible wavelengths. The dark disks are seen in these images because they are silhouetted against the bright backdrop of the hot gas of the Orion nebula. The red glow in the center of each disk is a young, newly formed star, roughly one million years old (compared to the 4.5 billion year age ofthe Sun). The stars range in mass from 30% to 150% of the mass of our own Sun. As they evolve, the disks may go on to form planetary systems like our own. While only a handful of these dark silhouette disks have been discovered so far, they seem to belong to a much larger family of similar objects, and current indications are that protoplanetary disks are common in the Orion nebula. Mark McCaughrean of the Max-Planck-Institute for Astronomy, Heidelberg,Germany, and his collaborator C. Robert O'Dell from Rice University, Houston, Texas, spotted the new disks in large-scale survey images of the Orion nebula that O'Dell had taken with Hubble between January 1994 and March 1995. A detailed study of the disk images has been submitted for publication to the Astronomical Journal. Each image is 167 billion miles, or 257 billion kilometers across (30 times the diameter of our own solar system). The disks range in size from two to eight times the diameter of our solar system. The researchers explain the different circular or elliptical shapes as being due to the fact that each disk is tilted toward Earth by different degrees. Each picture is a composite of three images taken with Hubble's Wide Field and Planetary Camera 2, through narrow-band filters which admit the light of emission lines of ionized oxygen (represented here by blue), hydrogen (green), and nitrogen (red). The hot gas of the background Orion nebula emits strongly at each of these wavelengths, providing a strong backdrop for the disks to be silhouetted against.In each case, the central star is also clearly visible. Credit: Mark McCaughrean (Max-Planck-Institute for Astronomy), C. Robert O'Dell (Rice University), and NASAImage files in GIF and JPEG format and captions may be accessed onInternet via anonymous ftp from ftp.stsci.edu in /pubinfo: GIF JPEGPRC95-45b Proplyds in Orion gif/OriProp4.gif jpeg/OriProp4.jpg Higher resolution digital versions (300 dpi JPEG) of the releasephotographs will be available temporarily in /pubinfo/hrtemp:95-45b.jpg.GIF and JPEG images and captions are available via World Wide Web athttp://www.stsci.edu/pubinfo/PR/95/45.html, or via links inhttp://www.stsci.edu/pubinfo/Latest.html, and inhttp://www.stsci.edu/pubinfo/Pictures.html. Rechts: Nicmos Peers Through Dust to Reveal Young Stellar Disks The images were taken by NASA Hubble Space Telescope's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). All of the objects are extremely young stars, 450 light-years away in the constellation Taurus. Most of the nebulae represent small dust particles around the stars, which are seen because they are reflecting starlight. In the color-coding, regions of greatest dust concentration appear red. All photo credits: D. Padgett (IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and NASA [Top left]: CoKu Tau/1. This image shows a newborn binary star system, CoKu Tau/1, lying at the center of four "wings" of light extending as much as 75 billion miles from the pair. The "wings" outline the edges of a region in the stars' dusty surroundings, which have been cleared by outflowing gas. A thin, dark lane extends to the left and to right of the binary, suggesting that a disk or ring of dusty material encircles the two young stars. [Top center]: DG Tau B - An excellent example of the complementary nature of Hubble's instruments may be found by comparing the infrared NICMOS image of DG Tau B to the visible-light Wide Field and Planetary Camera 2 (WFPC2) image of the same object. WFPC2 highlights the jet emerging from the system, while NICMOS penetrates some of the dust near the star to more clearly outline the 50 billion-mile-long dust lane (the horizontal dark band, which indicates the presence of a large disk forming around the infant star). The young star itself appears as the bright red spot at the corner of the V-shaped nebula. [Top right]: Haro 6-5B - This image of the young star Haro 6-5B shows two bright regions separated by a dark lane. As seen in the WFPC2 image of the same object, the bright regions represent starlight reflecting from the upper and lower surfaces of the disk, which is thicker at its edges than its center. However, the infrared view reveals the young star just above the dust lane. [Bottom left]: I04016 - A very young star still deep within the dusty cocoon from which it formed is shown in this image of IRAS 04016+2610. The star is visible as a bright reddish spot at the base of a bowl-shaped nebula about 100 billion miles across at the widest point. The nebula arises from dusty material falling onto a forming circumstellar disk, seen as a partial dark band to the left of the star. The necklace of bright spots above the star is an image artifact. [Bottom center]: I04248 - In this image of IRAS 04248+2612, the infrared eyes of NICMOS peer through a dusty cloud to reveal a double-star system in formation. A nebula extends at least 65 billion miles in opposite directions from the twin stars, and is illuminated by them. This nebula was formed from material ejected by the young star system. The apparent "pinching" of this nebula close to the binary suggests that a ring or disk of dust and gas surrounds the two stars. [Bottom right]: I04302 - This image shows IRAS 04302+2247, a star hidden from direct view and seen only by the nebula it illuminates. Dividing the nebula in two is a dense, edge-on disk of dust and gas which appears as the thick, dark band crossing the center of the image. The disk has a diameter of 80 billion miles (15 times the diameter of Neptune's orbit), and has a mass comparable to the Solar Nebula, which gave birth to our planetary system. Dark clouds and bright wisps above and below the disk suggest that it is still building up from infalling dust and gas. Peter H. Richter - Institut für Theoretische Physik - Universität Bremen – 6. April 2001

Ypsilon Andromedae Peter H. Richter - Institut für Theoretische Physik - Universität Bremen – 6. April 2001

Keplers Kosmos Einfache Gesetze Harmonie der Frequenzen Keplers 1., 2., 3. Gesetz Harmonie der Frequenzen Göttlicher Bauplan Peter H. Richter - Institut für Theoretische Physik - Universität Bremen – 6. April 2001

Planetenbewegungen Sonne und Jupiter allein: Kepler-Ellipsen Sonne, Jupiter und dritter Körper: Chaos Raumfestes und mitrotierendes System D Peter H. Richter - Institut für Theoretische Physik - Universität Bremen – 6. April 2001

Das eingeschränkte Drei-Körper-Problem 0.000 03 0.000 003 0.5 0.01 0.001

Jupiters Chaos Elliptische und hyperbolische periodische Bahnen: Resonanzen Quasiperiodische Bahnen: Kolmogorov-Arnold-Moser Tori Chaotische Bahnen J Peter H. Richter - Institut für Theoretische Physik - Universität Bremen – 6. April 2001

Orbits und Poincare-Schnitte im S-Bereich Peter H. Richter - Institut für Theoretische Physik - Universität Bremen – 6. April 2001

Außen- Bereich J- Bereich Die Saturnbahn hat im Verhältnis zu der des Jupiter eine Windungszahl 3:2. Das ergibt sich aus den Umlaufzeiten wie folgt. Jupiter braucht 12 Jahre, Saturn 30 für einen Umlauf. Wenn also Saturn einen Umlauf vollendet hat, ist Jupiter bereits 5/2 mal umgelaufen. Saturn hinkt also 3/2 mal hinterher .... Anspielung auf den Geburtstag Peter H. Richter - Institut für Theoretische Physik - Universität Bremen – 6. April 2001

Orbit c und sein Chaos Peter H. Richter - Institut für Theoretische Physik - Universität Bremen – 6. April 2001

Stoß- und Ejektionsbahnen c a E=-1.51 Peter H. Richter - Institut für Theoretische Physik - Universität Bremen – 6. April 2001

E=-1.4995: Trojaner Peter H. Richter - Institut für Theoretische Physik - Universität Bremen – 6. April 2001

Das Kopenhagen-Problem Peter H. Richter - Institut für Theoretische Physik - Universität Bremen – 6. April 2001

Chaos im Kosmos? Skaleninvarianz der Gravitation Chaos am Anfang: räumliche Homogenität Kondensation der Materie: Galaxien, Sternsysteme Deterministisches Chaos: hilft putzen Zwischenergebnis: Keplers Harmonien Aber das Chaos höret nimmer auf ... Peter H. Richter - Institut für Theoretische Physik - Universität Bremen – 6. April 2001