V3 Kraftfelder und Minimierung

Slides:



Advertisements
Ähnliche Präsentationen
V3 Molekülmechanik-Kraftfelder und Minimierung
Advertisements

V6 Abrundung des ersten Vorlesungsteils
Computational Chemistry
V3 Kraftfelder und Minimierung
V4 Algorithmen zur Energieminimierung
Eine dynamische Menge, die diese Operationen unterstützt,
Simulation komplexer technischer Anlagen
Algebraische Zahlen: Exaktes Rechnen mit Wurzeln
Schnelle Matrizenoperationen von Christian Büttner
Vom graphischen Differenzieren
Docking von starren und flexiblen Proteinen
Genetische Algorithmen für die Variogrammanpassung
Simulated Annealing Marco Block & Miguel Domingo Seminar : Maschinelles Lernen und Markov KettenSommersemester 2002.
Einführung Übersicht Einsatz der Zielwertsuche Einsatz des Solvers
Minimieren ohne Ableitungen
1 2. Vorlesung SS 2005 Computational Chemistry1 Elektrostatik Elektrische Wechselwirkungen zwischen Ladungen bestimmen grosse Teile der Physik, Chemie.
1 2. Vorlesung SS 2006 Computational Chemistry1 Quantentheorie auf einer Folie Wesentliche Elemente der Quantenmechanik sind: Die Energie ist gequantelt.
V2 Strukturen und molekulare Kräfte - übriggebliebenes
Vorlesung Kolloidchemie I
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (19 - Analyse natürlicher Bäume) Prof. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (27 – Kürzeste Wege) Prof. Th. Ottmann.
Genetische Algorithmen
Kapitel 5 Stetigkeit.
Kapitel 6 Differenzierbarkeit. Kapitel 6: Differenzierbarkeit © Beutelspacher Juni 2005 Seite 2 Inhalt 6.1 Die Definition 6.2 Die Eigenschaften 6.3 Extremwerte.
Struktur und Funktion von Biopolymeren Elmar Lang
Computational Chemistry
Computational Chemistry
V2 Strukturen und molekulare Kräfte
V2 Strukturen und molekulare Kräfte
V2 Strukturen und molekulare Kräfte
Quaternionen Eugenia Schwamberger.
Mathematische Grundlagen und Rechnen mit algebraischen Zahlen
Variationsformalismus für das freie Teilchen
Bindungsverhältnisse in Kristallen
§24 Affine Koordinatensysteme
Computational Chemistry
Ausgleichungsrechnung II
Computational Chemistry
Strukturen und molekulare Kräfte
V2 Strukturen und molekulare Kräfte
Quantenchemische Grundlagen (I)
Kraftfelder und Minimierung
Quantenchemische Grundlagen (I)
Effiziente Algorithmen
Black Box Algorithmen Hartmut Klauck Universität Frankfurt SS
Effiziente Algorithmen
Quantum Computing Hartmut Klauck Universität Frankfurt WS 05/
Beweissysteme Hartmut Klauck Universität Frankfurt WS 06/
Quantum Computing Hartmut Klauck Universität Frankfurt WS 04/
Der Aufbau der Materie: Isotrope Bindungskräfte
Fundamente der Computational Intelligence (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl für Algorithm Engineering Wintersemester.

… oder wie finde ich den Weg
Aggregatzustände im Teilchenmodell
Aggregatzustände im Teilchenmodell
Chemische Bindungen.
Strategie der Modellbildung
Lösen von quadratischen Ungleichungen
Wir betrachten die Aggregatszustände der
Ionen-, Molekül- und Metallbindungen
Lineare Strahlenoptik
Das Traveling Salesman Problem (TSP)
Aufgabe 1 Ein kleines Protein (siehe Sequenz) wurde mit dem Enzym Trypsin inkubiert. Typsin hydrolysiert Peptidbindungen nach Arginin und Lysin. a. Ordnen.
Vom graphischen Differenzieren
Nichtlineare Optimierung
Konformation der Biopolymere
2 Die chemische Bindung 2.2 Die Atombindung
In PBPK Schätzung von Modellparametern. Direktes Problem vs. Inverses Problem Direktes Problem: gegeben Kompartimentenmode ll K, Parameter p Input x gesucht.
Fachdidaktische Übungen Stefan Heusler.
Lineare Optimierung Nakkiye Günay, Jennifer Kalywas & Corina Unger Jetzt erkläre ich euch die einzelnen Schritte und gebe Tipps!
 Präsentation transkript:

V3 Kraftfelder und Minimierung verschiedene Kraftfelder Terme in Kraftfeldern Elektrostatik starke und schwache zwischenmolekulare Kräfte Optimierungs-/Minimierungsalgorithmen 3. Vorlesung SS09 Computational Chemistry

Computational Chemistry Kovalente Bindungen Kovalente Bindungen lassen sich erfolgreich als Oszillator darstellen. Mathematisch kann diese Form des Energiepotentials auf verschiedene Weise angenähert werden. 3. Vorlesung SS09 Computational Chemistry

Bindungen im Kraftfeld (I) Die einfachste Annäherung ist das harmonische Potential → AMBER, CHARMM, ... Vorteile: schnell zu berechnen (v.a. bei sehr vielen Atomen) Betonung des Minimums bei sehr großem r (z.B. schlechte Startgeometrie) Nachteil: schlechte Werte wenn r weit weg von r0 ist 3. Vorlesung SS09 Computational Chemistry

Bindungen im Kraftfeld (II) Sehr viel exakter ist das Morsepotential Vorteile: sehr gute Übereinstimmung mit dem tatsächlichen Potentialverlauf Nachteil: exp-Funktion ist numerisch aufwendig zu berechnen 3 Parameter pro Bindung notwendig 3. Vorlesung SS09 Computational Chemistry

Bindungen im Kraftfeld (III) Quadratische und kubische Funktion vom Abstand r → MM2, MM3, ... Vorteil: noch relativ schnell zu berechnen Nachteil: falscher Verlauf wenn r sehr viel größer als r0 ist 3. Vorlesung SS09 Computational Chemistry

Bindungsabstände und Bindungsdissoziationsenergien (I) Bindung Abstand [Å] Do [kJ/mol] (homolytische Spaltung) H–H 0.742 432 C–H 1.09 ± 0.01 411 ± 7 C–C 1.54 345 C=C 1.34 - 1.40* 602 ± 21 *aromatische Bindung C≡C 1.20 835 C–N 1.47 305 C=N 1.35 615 C≡N 1.16 887 C–O 1.43 358 C=O 1.20 526 C–Si 1.85 318 C–P 1.84 264 C–S 1.82 272 C=S 1.60 577 ± 21 länger länger, schwächer Verändert aus: J.E.Huheey Inorganic Chemistry, Wiley. 3. Vorlesung SS09 Computational Chemistry

Bindungsabstände und Bindungsdissoziationsenergien (II) Bindung Abstand [Å] Do [kJ/mol] C–F 1.35 485 C–Cl 1.77 327 C–Br 1.94 285 C–I 2.14 213 C–H 1.09 411 O–H 0.96 459 N–H 1.01 386 ± 8 S–H 1.34 363 ± 5 N–N 1.45 247 ± 13 N=N 1.25 418 N–O 1.40 201 N=O 1.21 607 P–O 1.63 ≈335 P=O ≈1.50 ≈544 Aber nicht in Kraftfeldern, da die Topologie nicht verändert wird ! (kein Bindungsbruch) apolares Wasserstoffatom polare Wasserstoffe, tauschen in polarem Solvens aus (z.B. mit denen des Wassers) Grund: N, O, und S sind elektronegativer als C; Heterolytische Spaltung der Bindung → Ionen 3. Vorlesung SS09 Computational Chemistry

Bindungen im Kraftfeld (II) Um die unterschiedlichen Bindungslängen und Bindungsstärken angemessen wiederzugeben brauchen wir also für jedes Element eine ganze Reihe von Atomtypen. Zumindest so viele, wie es Hybridisierungszustände gibt. Bindung r0 [Å] k [kcal mol-1 Å-2] Csp3–Csp3 1.523 317 Csp3–Csp2 1.497 317 Csp2=Csp2 1.337 690 Csp2=O 1.208 777 Csp3–Nsp3 1.438 367 Auswahl an Atomtypen des MM Kraftfeldes (N. Allinger 1977) 3. Vorlesung SS09 Computational Chemistry

Computational Chemistry Bindungsabstände Extreme Abweichungen von idealen Bindungsabständen 3. Vorlesung SS09 Computational Chemistry

Computational Chemistry Bindungswinkel (I) Hängen sehr stark von der Hybridisierung ab Die C–C s-Bindung entsteht durch Überlappung der 1s Orbitale Die C–C p-Bindung durch Überlappung der 2p Orbitale 3. Vorlesung SS09 Computational Chemistry

Computational Chemistry Bindungswinkel (II) Extreme Abweichungen von idealen Bindungswinkeln Verursacht Ringspannung in 3- und 4-Ringen → Probleme für Kraftfelder. Man benötigt deshalb mehr als einen Atomtyp pro Hybridisierung (vgl. spx Hybridisierung). 3. Vorlesung SS09 Computational Chemistry

Computational Chemistry Bindungswinkel (III) Mathematische Formen für das Bindungswinkelpotential Harmonisches Potential → MM, MM2, MM3, AMBER, CHARMM,... (cyclische) Cosinusterme → UFF 3. Vorlesung SS09 Computational Chemistry

Computational Chemistry Torsionswinkel (I) Mathematische Formen für das Torsionspotential Überlagerung von Cosinustermen 3. Vorlesung SS09 Computational Chemistry

Zusätzliche Potentiale (I) Problemfall Cyclobutanon Lösung: spezielle Atomtypen und Winkelpotentiale, oder Out of plane bending Improper torsion: Potential des Torsionswinkel über 1-2-3-4 soll bei 180° ein Minimum haben 3. Vorlesung SS09 Computational Chemistry

Zusätzliche Potentiale (II) Typische Gruppen und Fragmente bei denen improper torsions oder out of plane bending Terme eingesetzt werden, um Planarität zu erzwingen → Seitenketten in Aminosäuren (welche ?) 3. Vorlesung SS09 Computational Chemistry

Zusätzliche Potentiale (III) Beobachtung: bei kleineren Winkeln werden die Bindungen länger Kreuzterme zwischen Winkel und Bindungslängen → MM2, MM3, CHARMM Weitere Kreuzterme: Bindung-Torsion, Winkel-Torsion, Winkel-Winkel,... Ursache: Nichtbindende Wechselwirkungen zwischen Atomen zwischen denen keine Bindung besteht 3. Vorlesung SS09 Computational Chemistry

Elektrostatische Kräfte (I) Das unterschiedliche Bestreben der Atome/Elemente Elektronen aufzunehmen bzw. abzugeben führt zu einer ungleichmäßigen Verteilung der Ladung über das Molekül. Am einfachsten wird diese durch die Annahme partieller Ladungen auf den Atomen modelliert. (Eigentlich: Atomkerne positiv geladen, Elektronenhülle negativ) In der Praxis werden solche nicht-bindenden Wechselwirkungen nur zwischen Atomen berechnet, die mindestens 4 oder mehr Bindungen auseinander sind (implizit in Winkel- und Torsionstermen enthalten). 3. Vorlesung SS09 Computational Chemistry

Elektrostatische Kräfte (II) Beispiel: die Coulomb-Anziehung zwischen einem Na+ und Cl- Ionenpaar im Abstand von r = 2.8 Å (= 280 pm = 2.8 ∙10-7 m) im Vakuum Die Ladung eines Protons ist e = +1.60 ∙10-19 C, die eines Elektrons e = –1.60 ∙10-19 C, Dielektrizitätskonstante des Vakuums eo = = 8.85 ∙10-12 C2 J-1m-1 relative Dielektrizitätskonstane er (Vakuum = 1, Wasser ≈ 80) 3. Vorlesung SS09 Computational Chemistry

Partielle Atomladungen (I) Das Konzept partieller Atomladungen ist zwar äußert nützlich, physikalisch sind diese jedoch weder beobachtbar noch messbar. Zur Ableitung partieller Atomladungen gibt es mehrere Verfahren: Gasteiger-Marsili-Ladungen: Partieller Ausgleich der Elektronegativität in einem iterativen Verfahren (es wird ein Teil der Elektronen auf das jeweils elektronegativere Element transferiert). Lit: J.Gasteiger, M.Marsili, Tetrahedron 36 (1980) 3219-3288. 3. Vorlesung SS09 Computational Chemistry

Partielle Atomladungen (II) Fit der Atomladungen aus quantenchemischen Berechnungen der Elektronendichte bzw. des elektrostatischen Potentials. Die Partialladungen werden so lange angepasst, bis das von ihnen erzeugte Potential auf van-der-Waals Oberflächen um das Molekül herum am besten dem von der Kern- und Elektronenladungen erzeugten quantenmechanischen Potential gleicht. Literatur: Cox & Williams J. Comput. Chem. 2 (1981) 304 Breneman & Wiberg J. Comput. Chem. 11 (1990) 361 CHELPG Verfahren Singh & Kollman J. Comput. Chem. 5 (1984) 129 RESP Verfahren  Ladungen für das AMBER Kraftfeld 3. Vorlesung SS09 Computational Chemistry

Elektrische Multipole Die elektrischen Multipole geben die Ladungsverteilung im Molekül wieder: Cl- Ion Monopol Hd+- Cld- >=2 Ladungen Dipol allgemeines Dipolmoment m vektorielle Größe m = q ∙ l Die höheren elektrischen Momente sind: CO2 4 Ladungen Quadrupol 3*3 Matrix (Tensor) CH4 8 Ladungen Octupol 16 Ladungen Hexadekapol ... Ladungen müßen nicht zwangsweise auf den Atomen liegen ! 3. Vorlesung SS09 Computational Chemistry

Nichtbindende Wechselwirkungen (I) Bereich bis zu: ≈250 kcal/mol ≈200 kcal/mol 1-8 kcal/mol (neutral) 0.5 kcal/mol (pro Atompaar) Welche gibt es? Elektrostatische: Salzbrücken Koordinative Bindung von Metallen (Komplexe) Wasserstoffbrücken (auch zu geladenen Gruppen) van der Waals 3. Vorlesung SS09 Computational Chemistry

Nichtbindende Wechselwirkungen (II) Starke und mittlere Elektrostatische Interaktionen (statisch) schwächer 3. Vorlesung SS09 Computational Chemistry

Nichtbindende Wechselwirkungen (III) schwache elektrostatische Interaktionen (induziert, dynamisch) schwächer Geringere Polarisierbarkeit Hydrophobe Interaktionen van der Waals (vdW) WW 3. Vorlesung SS09 Computational Chemistry

Nichtbindende Wechselwirkungen (IV) Dispersive Interaktionen: London-Kräfte und van der Waals WW Fluktuationen der Elektronenwolke erzeugen kurzzeitige Dipole. Diese induzieren wiederum Dipole wodurch im zeitlichen Mittel eine Anziehung resultiert. Lennard-Jones potential 3. Vorlesung SS09 Computational Chemistry

Nichtbindende Wechselwirkungen (V) Hydrophobe Interaktionen sind durch die Abwesenheit von polaren Wasserstoffen (und geringen Elektronegativitätsunterschieden) charakterisiert. Beispiele für apolare Gruppen: Beispiele für apolare Substituenten: Elektronegativität (Elektronen-ziehend) Polarisierbarkeit 3. Vorlesung SS09 Computational Chemistry

Zusätzliche Potentiale (IV) Zusätzlich zur elektrostatischen Anziehung gibt es Terme um Wasserstoffbrücken (exakter) zu beschreiben, v.a. deren Winkelabhängigkeit. Eine Modifikation der van der Waals Anziehung berücksichtigt nur die Abstandsabhängigkeit → AMBER, CHARMM Kraftfeld 3. Vorlesung SS09 Computational Chemistry

Zusätzliche Potentiale (V) Zusätzliche Berücksichtigung der Winkelabhängigkeit bei H-Brücken: YETI Kraftfeld GRID Programm P.Goodford J.Med.Chem. 28 (1985) 849. 3. Vorlesung SS09 Computational Chemistry

Zusätzliche Potentiale (VI) Spezielle Kraftfelder beinhalten Terme zur Modellierung von p-Elektronen (konjugative Effekte auf Bindungslängen) Polarisierbarkeit Nachteile: hoher numerischer Aufwand Parameterisierung erklärt nicht (immer) die zugrundeliegenden physikalischen Effekte 3. Vorlesung SS09 Computational Chemistry

Kraftfelder – ein (unvollständiger) Stammbaum MM Allinger 1973 Karplus, Gelin AMBER Weiner, Kollman 1981 CHARMM Brooks, Karplus 1982 MM2 Allinger 1977 GROMOS van Gunsteren, Berendsen 1987 MM3 Allinger 1989 OPLS Jorgensen 1989 Dreiding Olafson, Goddard 1990 MM4 Allinger 1996 UFF Rappé, Goddard 1992 Sybyl, MMCV 3. Vorlesung SS09 Computational Chemistry

Minimierungsalgorithmen (I) Für eine vorgegebene Molekülgeometrie (Konformer) können wir nun also die spezifische Kraftfeldenergie berechnen. Die Frage ist nun: Gibt es energetisch günstigere Konformere ? Wir brauchen also die Ableitung der Energie nach der Geometrie, sprich den Atomkoordinaten. 3. Vorlesung SS09 Computational Chemistry

Minimierungsalgorithmen (II) Im einfachsten Fall könnten wir zufällige Veränderungen der Atomkoordinaten generieren, und energetisch günstigere als neue Geometrie akzeptieren. Eine ähnliche Vorgehensweise liegt bei Monte Carlo Simulationen vor. Für nur eine Koordinate (z.B. 1 Bindungslänge) könnten wir das Minimum durch Intervallschachtelung finden. Für eine zielgerichtete Suche nach einem Energieminimum werden wir aber die Ableitungen der Energiefunktion verwenden. 3. Vorlesung SS09 Computational Chemistry

Computational Chemistry Energiehyperfläche Einfache Energiehyperflächen (2 Koordinaten) kann man entweder als Hyperfläche (links) oder als Contour-Plot (rechts) darstellen. Ran Friedman bioinfo.tau.ac.il/Protein_Visualization_01-02/ Lesson%207/Introduction_Prot_Simul.ppt f = (x-2)2 + (y+1)2 3. Vorlesung SS09 Computational Chemistry

Freiheitsgrade und Koordinatensysteme (I) Selbst einfachste Moleküle haben eine Vielzahl von Freiheitsgraden, die die einzelnen Konformere ineinander überführen. Wir können diese Freiheitsgrade entweder durch die internen Koordinaten ausdrücken (Bindungen, Winkel, Torsionen), oder durch Angabe der kartesischen Koordinaten (x,y,z) für jedes der N Atome. 4 Atome: 3 Bindungen + 2 Winkel + 1 Torsion = 6 interne Koordinaten 4 Atome: 4 ∙ 3 x,y,z-Koordinaten = 12 kartesische Koordinaten Im Falle von kartesischen Koordinaten haben wir 3 ∙ N Koordinaten. Durch reine Translationen und Rotationen des gesamten Moleküls ändert sich dessen Geometrie jedoch nicht. Benutzen wird dagegen interne Koordinaten so reduzieren sich die Optimierung auf 3N – 6 Koordinaten. 3. Vorlesung SS09 Computational Chemistry

Freiheitsgrade und Koordinatensysteme (II) Die Verwendung der internen Koordinaten macht dann Sinn, wenn die Generierung der Ableitungen rechenzeitaufwendig ist, z.B. bei quantenchemischen Methoden. Zur Darstellung/Eingabe solcher Molekülkoordinaten wird daher oft eine sog. Z-Matrix verwendet: H C r1 1 N r2 2 a1 1 O r3 3 a2 2 d1 1 3. Vorlesung SS09 Computational Chemistry

Freiheitsgrade und Koordinatensysteme (III) Bei großen Molekülen kommt der Unterschied zwischen 3N – 6 und 3N Koordinaten kaum noch zum Tragen. Deshalb verwendet man bei Kraftfeldrechnungen üblicherweise kartesische Koordinaten. Weiterer Vorteil von kartesischen Koordinaten: Visuell einfach darstellbar Keine numerischen Probleme der Z-Matrix bei linearen Molekülen Nachteil kartesischer Koordinaten: Zur Berechung der Ableitungen muss oftmals in interne Koordinaten transformiert werden. 3. Vorlesung SS09 Computational Chemistry

Computational Chemistry Energiehyperfläche 3. Vorlesung SS09 Computational Chemistry

Energiehyperfläche: Gradient Gradient – die erste Ableitung der Energie E bezüglich der Koordinaten kartesische Koordinaten x, y, z interne Koordinaten l, , , ... Kraft Stationäre Punkte - Punkte auf der Energiehyperfläche, in denen der Gradient (bzw. die Kraft) gleich Null ist. Dies sind Maxima, Minima, Übergangszustände und Sattelpunkte. 3. Vorlesung SS09 Computational Chemistry

Energiehyperfläche: Hess’sche Matrix Für eine stetige und zweimal differenzierbare Funktion f ist g(x) = (g1, ..., gN) der Gradientenvektor der ersten Ableitungen Die N  N Matrix der zweiten Ableitungen heisst Hess’sche-Matrix. In einem Minimum ist die Krümmung positiv. In höheren Dimensionen wird Konvexität in einem Punkt x* als positive Definitheit der Hess’schen Matrix bezeichnet: Positive Definitheit garantiert, daß alle Eigenwerte in x* positiv sind. 3. Vorlesung SS09 Computational Chemistry

Energiehyperfläche: Definitionen Eine positiv-semidefinite Matrix hat nichtnegative Eigenwerte. Eine negativ-semidefinite Matrix hat nichtpositive Eigenwerte. Eine negativ-definite Matrix hat lediglich negative Eigenwerte. Ansonsten ist die Matrix indefinit. Stationäre Punkte sind fett markiert. 3. Vorlesung SS09 Computational Chemistry

Vorzeichen der zweiten Ableitungen Durch Diagonalisierung der Hess’schen Matrix erhält man Eigenvektoren, die die normalen ( = orthogonalen) Schwingungsmoden des Moleküls sind. Die zugehörigen Eigenwerte sind proportional zum Quadrat der jeweiligen Schwingungsfrequenz. Das Vorzeichen der zweiten Ableitungen entscheidet, ob es sich bei stationären Punkten auf der PES um Maxima oder um Minima handelt, da mit einer Frequenzrechnung das Vorzeichen der Schwingungsfrequenzen bestimmt wird. Damit lässt sich auch endgültig klären, ob eine Konformation tatsächlich ein Minimum auf der PES ist Minima auf der PES besitzen nur positive Eigenwerte bzw. reelle Schwingungsfrequenzen Maxima oder Sattelpunkte (Maximum in einer Richtung, aber Minima in allen anderen Richtungen) besitzen eine oder mehrere imaginäre Schwingungs-frequenzen. (Die Quadratwurzel aus einer negativen Zahl ergibt eine imaginäre Zahl). Übergangszustände haben genau 1 negativen Eigenwert. 3. Vorlesung SS09 Computational Chemistry

Algorithmen zur Energieminimierung Lokales Minimum: Für einen Vektor x mit n Komponenten {xi} lautet das Minimierungsproblem minx { f(x) }, x D  n. Dann ist x ein lokales Minimum und f( x) < f(y)  y D  n, y  x Globales Minimum: x  n ist ein globales Minimum  f( x) < f(y)  y  n  x [Schlick 10.2.4] 3. Vorlesung SS09 Computational Chemistry

Methode, die nur die Energiewerte verwendet ... Am einfachsten zu implementieren. Läuft in eine Richtung bis die Energie ansteigt, dreht dann um die Suchrichtung um 90º, etc. ist am wenigsten effizient viele Schritte notwendig Schritte sind nicht gerichtet wird daher selten verwendet. 3. Vorlesung SS09 Computational Chemistry

Grundlegende algorithmische Konzepte Die grundlegende Struktur von iterativen, lokalen Optimierungsalgorithmen ist die des “greedy descent” (am schnellsten bergab). D.h. ausgehend von einem Startpunkt x0 wird eine Sequenz von Schritten {xk} erzeugt, wobei bei jeder Iteration versucht wird, den Wert der Zielfunktion f(x) zu verringern. Es gibt 2 Klassen von Algorithmen: line-search und trust-region. Beide sind weitverbreitet und sind Bestandteile von Optimierungsmethoden, die von jedem Startpunkt aus die Konvergenz zu einem lokalen Minimum garantieren. Beide Methoden sind gleichermaßen empfehlenswert. 3. Vorlesung SS09 Computational Chemistry

Line-Search basierender Descent Algorithmus [A1] Von einem gegebenen Anfangspunkt x0 aus, führe für k = 0, 1, 2, … die folgenden Schritte so lange aus bis Konvergenz eintritt. (1) Überprüfe xk auf Konvergenz (2) Berechne eine Abstiegs-Richtung pk (3) Bestimme eine Schrittweite k durch eine 1-dimensionale Suche so dass für den neuen Positionsvektor xk+1 = xk + k pk und den entsprechenden Gradient gk+1 gilt: (“ausreichende Abnahme”) (“ausreichende Verringerung der gerichteten Ableitung”) z.B.  = 10-4,  = 0.9 in Newton-Methoden (4) Setze xk+1 = xk + k pk und k  k + 1 und gehe zurück nach (1) 3. Vorlesung SS09 Computational Chemistry

[A1] (2): Richtung der Abnahme Eine solche Richtung pk ist eine Richtung, entlang derer die Funktion f lokal abnimmt. Solch einen Vektor kann man durch definieren. Für genügend kleine  gilt dann: 3. Vorlesung SS09 Computational Chemistry

Computational Chemistry Steepest Descent (SD) Die einfachste Möglichkeit, eine gültige Abnahme-Richtung vorzugeben, ist zu setzen: Damit ist automatisch erfüllt 3. Vorlesung SS09 Computational Chemistry

Steepest Descent (SD) Methode in der Praxis Ist die einfachste häufig verwendete Methode folgt wie oben erwähnt jeweils dem negativen Gradienten g (also der grössten Kraft) d = - g man legt meist einen minimalen und maximalen Wert für die Verschiebung der Koordinaten fest jenach, wie steil der Gradient ist, wird die Schrittweite vergrössert oder verkleinert SD ist die schnellste Methode, wenn man eine schlechte Startgeometrie besitzt konvergiert langsam in der Nähe des Minimums kann dort um das Minimum oszillieren 3. Vorlesung SS09 Computational Chemistry

Conjugate Gradient (CG) Methode verwendet die ‘Geschichte’ der Minimierung, also den vorherigen Wert di-1. di = - gi + i-1 di-1 Im Gegensatz zu SD wird also implizit die Information der zweiten Ableitungen verwendet um die Suche zu steuern. Es gibt viele Varianten von CG wie Fletcher-Reeves, Davidon-Fletcher-Powell und Polak-Ribiere Methoden. CG konvergiert wesentlich schneller in der Nähe des Minimums als SD! 3. Vorlesung SS09 Computational Chemistry

Methoden mit zweiter Ableitung Die zweite Ableitung der Energie E bezüglich der (kartesischen) Koordinaten r – die Hess’sche Matrix H(r) – bestimmt den Suchpfad. Entwickle E(r) um r Dann ist der Newton-Raphson Schritt fi ist die Projektion des Gradienten entlang des Hess’schen Eigenvektors mit Eigenwert i. Ist rechenaufwendiger, aber gewöhnlich schnell und zuverlässig, besonders in der Nähe des Minimums. Varianten: Quasi-Newton (QN), Newton-Raphson ... 3. Vorlesung SS09 Computational Chemistry

Trust-Region basierender Descent Algorithmus [A2] Nimm an, daß in einer inneren Region eine quadratische Funktion qk als Näherung an f existiert, der man “vertrauen kann”. Es reicht dann aus, das Minimum dieser quadratischen Funktion zu finden. Algorithmus: Von einem gegebenen Anfangspunkt x0 aus, führe für k = 0, 1, 2, … die folgenden Schritte so lange aus bis Konvergenz eintritt. (1) Überprüfe xk auf Konvergenz (2) Berechne einen Schritt sk durch Lösen des Subproblems wobei qk das quadratische Model der Zielfunktion ist: Dies gilt für s innerhalb einer Schranke k > 0. Ausgedrückt mit einer Skalierungsmatrix Dk gilt (3) Setze xk+1 = xk + sk und k  k + 1 und gehe zurück nach (1) 3. Vorlesung SS09 Computational Chemistry

praktische Empfehlungen Benutze viele unterschiedliche Startpunkte Vergleiche Ergebnisse mehrerer Algorithmen (bzw. mehrerer Kraftfelder) überprüfe Eigenwerte im Minimum. Bis auf 6 Eigenwerte, die fast gleich Null sein sollten und die Translations- und Rotationsinvarianz wiederspiegeln, sollten alle positiv sein. [Schlick, Kap. 10.7] Bei der Optimierung von Proteinstrukturen ausgehend von den Koordinaten aus der zugehörigen .pdb Datei empfiehlt sich folgende Strategie: 100-500 Schritte mittels steepest descent (grobe Optimierung, v.a. Torsionswinkel und nichtbindende Wechselwirkungen) anschließende Optimierung mit einem conjugate gradient Verfahren (schneller in der Nähe eines Minimums) [Leach “Molecular Modelling”, Kap.4 Energy minimisation] 3. Vorlesung SS09 Computational Chemistry

Verfahren um das globale Energie-Minimum zu finden Systematische Variation der Torsionswinkel Randomization-minimization (Monte Carlo) Moleküldynamik (Newton’sche Bewegungsgleichung) Simulated Annealing (reduziere Temperatur während MD Simulation) Genetische Algorithmen (man startet wird einer Menge von Konformationen; kleine Veränderungen; behalte die der geringsten Energie; wiederhole diese Schritte) Reine Zufallssuche (funktioniert am schlechtesten) 3. Vorlesung SS09 Computational Chemistry