Computational Chemistry

Slides:



Advertisements
Ähnliche Präsentationen
FT-Infrarot-Spektroskopie
Advertisements

Enthalpie, freie Enthalpie, freie Energie
Aminosäuren bilden: Peptidbindungen
Verbs Used Impersonally With Dative Deutsch I/II Fr. Spampinato.
Seminar “Kognitionspsychologie meets Ethnologie” SS 2007
1 Proseminar Bioinformatik: Theoretical Analysis of Protein-Protein-Interactions Scoring Functions Silke Ruzek 22.Juni.2004.
Energy Landscape of a Random Heteropolymer
V6: Proteinstrukturvorhersage
Energy Landscape of a Random Heteropolymer
Aminosäure, Peptide und Proteine
Wozu die Autokorrelationsfunktion?
PKJ 2005/1 Stefan Dissmann Zusammenfassung Bisher im Kurs erarbeitete Konzepte(1): Umgang mit einfachen Datentypen Umgang mit Feldern Umgang mit Referenzen.
Die Nukleon-Nukleon Wechselwirkung
Secondary Structure Prediction for Aligned RNA Sequences
How much paternal resemblance is enough? Sex differencies in hypothetical investment decisions but not in the detection of resemblance Platek, Critton,
Vorlesung: Einführung in der Bioinformatik
Wie macht man ein Sudoku? Transformations-Methode:
Kakuro Regeln und Strategien
Wiederholung: Einfache Regressionsgleichung
Die Geschichte von Rudi
AufwÄrmung A look at the future…..Match the German phrases on the left to the English ones on the right. Do your best; I am grading on participation! Wie.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
What do you see? Looks like President Clinton and Vice President Gore, right? Wrong... It's Clinton's face twice, with two different haircuts.
by Chrissi Bruckner & Chrissi Lipp
VL Algorithmische BioInformatik (19710)
Engineering tools for the NEO engineer
Clean Code Software-Entwicklung als Handwerkskunst Thomas Nagel, November 2011.
PEGASOS - Pan-European Gas-AeorSol-climate interaction Studies Aerosole stehen im Fokus des europäischen Projekts Pan-European Gas-AeroSOls-climate interaction.
Using latent semantic analysis to find different names for the same entity in free text Präsentation und Diskussion des Papers Im Rahmen des PS Web-Information.
Universität StuttgartInstitut für Wasserbau, Lehrstuhl für Hydrologie und Geohydrologie Copulas (1) András Bárdossy IWS Universität Stuttgart.
Aufgabe 1 Ein kleines Protein (siehe Sequenz) wurde mit dem Enzym Trypsin inkubiert. Typsin hydrolysiert Peptidbindungen nach Arginin und Lysin. a. Ordnen.
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) The dependence of convection-related parameters on surface and.
Research-guided Teaching Representation in the Biology Curriculum.
Research-guided Teaching Representation in the Biology Curriculum.
Institut für Angewandte Mikroelektronik und Datentechnik Phase 5 Architectural impact on ASIC and FPGA Nils Büscher Selected Topics in VLSI Design (Module.
Noch mehr Funktionen Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg,
Literary Machines, zusammengestellt für ::COLLABOR:: von H. Mittendorfer Literary MACHINES 1980 bis 1987, by Theodor Holm NELSON ISBN
Nachweis von B 0 s -Oszillationen mit dem ATLAS Detektor am LHC B. Epp 1, V.M. Ghete 2, E. Kneringer 1, D. Kuhn 1, A. Nairz 3 1 Institut für Experimentalphysik,
What is a “CASE”? in English: pronouns, certain interrogatives
What is a “CASE”? in English: pronouns, certain interrogatives
type / function / form type of words:
KLIMA SUCHT SCHUTZ EINE KAMPAGNE GEFÖRDERT VOM BUNDESUMWELTMINISTERIUM Co2 online.
Kapitel 9 Grammar INDEX 1.Prepositions 2.Dative Prepositions 3.Accusative Prepositions.
Kapitel 4 Grammar INDEX 1.Ordinal Numbers 2.Relative Pronouns and Relative Clauses 3.Conditional Sentences 4.Posessive: Genitive Case.
Wärmelehre Einige Erläuterungen.
Kapitel 2 Grammar INDEX 1.Subjects & Verbs 2.Conjugation of Verbs 3.Subject Verb Agreement 4.Person and Number 5.Present Tense 6.Word Order: Position of.
Kapitel 7 Grammar INDEX 1.Comparison 2.Adjectives 3.Adjective Endings Following Ein-Words.
Memorisation techniques
Kapitel 8 Grammar INDEX 1.Command Forms: The Du-Command Form & Ihr- Command 2.Sentences & Clauses.
Kapitel 9 Grammar INDEX 1.Formal Sie- Command 2.There Is/There Are 3.Negation: Nicht/Klein.
Das Wetter Lernziele: Heute: The „Wenn“ clause! - To describe and report the weather - To discuss activities done in different types of weather - To compare.
Outline Collaborators HgTe as a 3D topological insulator Sample design
On the case of German has 4 cases NOMINATIVE ACCUSATIVE GENITIVE DATIVE.
Adjektiven und Adverbien Endungen. Das prädikativ gebrauchte Adjektiv Predicate adjectives follow the verbs sein, werden or bleiben. The modify the subject.
QUEST-Meeting, 14. Dez. 2007, Offenbach Parametrisierung der Verdunstung in einem 2-Momenten-Schema Axel Seifert Deutscher Wetterdienst, Offenbach Geschäftsbereich.
Fabian Birzele Ludwig-Maximilians-University Munich Alternative Splicing and Protein Structure Evolution Fabian Birzele, Gergely Csaba and Ralf Zimmer,
Essay structure Example: Die fetten Jahre sind vorbei: Was passiert auf der Almhütte? Welche Bedeutung hat sie für jede der vier Personen? Intro: One or.
What’s the weather like?. Look at the question above Turn it around and you have Das Wetter ist.... The phrase Das Wetter ist.... or Es ist.... can be.
Strukturen 3B.2 LEKTION 3B 3B.2-1© 2014 by Vista Higher Learning, Inc. All rights reserved. Time expressions Startblock German has two main concepts related.
Sentence Structure Questions
Sentence Structure Connectives
Das Taschentuch-Spiel
CERN – TUD – GSI Webmeeting
THE PERFECT TENSE IN GERMAN
Ferrite Material Modeling (1) : Kicker principle
type / function / form type of words:
Zhunussova G., AA 81. Linguistic communication, i.e. the use of language, is characteristically vocal and verbal behaviour, involving the use of discrete.
 Präsentation transkript:

Computational Chemistry V13 Proteinfaltung Es gibt zwei grundsätzliche Sichtweisen des Proteinfaltungsproblems: 1 Was sind die treibenden Kräfte (driving forces), aufgrund derer sich ein Protein faltet? Physikalische/bioinformatische Sicht des Problems. 2 Zu welcher dreidimensionalen Struktur faltet sich (m)ein bestimmtes Protein? Biologische Sicht des Problems. 13. Vorlesung SS 2005 Computational Chemistry

Modellproblem: Kollision von H mit H2 Reaktion kann durch eine Reaktionskoordinate komplett beschrieben werden. Dobson, Karplus, Angew. Chemie Int. Ed. 37, 868 (1998) 13. Vorlesung SS 2005 Computational Chemistry

experimentell beobachtbare Variablen Die komplette Beschreibung der Protein-faltungsreaktion erfordert eine Vielzahl an Reaktionskoordinaten: - Wie ändert sich die Größe (der radius of gyration) mit der Zeit? (Exp. Kleinwinkelstreuung) Wann bilden sich Elemente der Sekundärstruktur? (Exp. FTIR, CD) Wann bildet sich der hydrophobe Kern? (Exp. Fluoreszenz) Wann werden die Wassermoleküle aus dem Proteininneren verdrängt? (Fluoreszenz-Quenching) Wann sind welche tertiären Kontakte gebildet? (siehe -value analysis, NMR) Was ist die Rolle von Dynamik (H/D-Austausch-Experimente) - Gibt es Intermediate? Dobson, Karplus, Angew. Chemie Int. Ed. 37, 868 (1998) 13. Vorlesung SS 2005 Computational Chemistry

Kombination von Simulation mit Experiment notwendig Proteinfaltung: Kombination von Simulation mit Experiment notwendig Experimente zeigen die Faltung stets entlang einiger weniger Reaktionskoordinaten. Es ist schwierig, dadurch den Mechanismus der Proteinfaltung zu verstehen. Das Fazit dieser Stunde wird lauten: Reichen Simulationen allein aus um Proteinfaltung zu verstehen? Nein! Kombination von Simulation mit Experiment. Ja! 13. Vorlesung SS 2005 Computational Chemistry

driving forces für Proteinfaltung 1 Typen von Wechselwirkungen hydrophob elektrostatisch 2 Wechselwirkungspartner Protein-Protein Protein-Solvens Solvens-Solvens 3 Freie Enthalpie (G) des Gesamtsystems reduzieren, nicht z.B. nur die innere Energie des Proteins alleine  dynamische Simulationen notwendig 13. Vorlesung SS 2005 Computational Chemistry

Nicht betrachtete Spezialfälle 1 Proteine mit Di-Sulphidbrücken (z.B. BPTI) Faltungskinetik wird komplett durch Bildung von Disulfidbrücken dominiert. 2 Proteine mit cis-Prolinen in entfalteten Peptide sind Proline zu 10 – 20 % in cis-Konformation;gefaltete Proteine haben fast nur trans-Proline; cis/trans-Isomerisierung dauert jedoch Minuten; es gibt jedoch spezielle cis/trans-Isomerasen wie Cyclophilin 3 Mehr-Domänenproteine ... Was bleibt dann noch übrig? kleine “Standard” Ein-Domänen-Proteine 13. Vorlesung SS 2005 Computational Chemistry

Warum ist die Energetik der Proteinfaltung ein schwieriges Problem? * “Problem der Proteinfaltung” beinhaltet zwei Aspekte: (a) Sequenz  Struktur ist weitgehend ungelöst (b) Verständnis der treibenden Kräfte/Dynamik/ Mechanismen. Diese sind mittlerweile vergleichsweise gut bekannt. * warum ist (a) so schwierig? Beispiel: Lysozym bei 25 C H UF = – 2245 kJ/mol davon sind – 1881 kJ/mol von den nichtpolaren Gruppen und – 364 kJ/mol von den polaren Gruppen - T S UF = + 2186 kJ/mol  UF = – 59 kJ/mol d.h. nur ca. 0.4 kJ/mol pro Residue ! Die Differenz zweier sehr großer Terme ist selbst sehr klein. 13. Vorlesung SS 2005 Computational Chemistry

Computational Chemistry Levinthal-Paradox 1968 C. Levinthal, J. Chim. Phys. 65, 44-45 (1968): Falls man eine Kette von 100 Aminosäuren betrachtet und annimmt, dass jede Aminosäure in einer von 3 Konformationen existieren kann – ausgestreckt, Helix oder Schleife - dann gibt es 3100 mögliche Weise, die Kette anzuordnen. Das sind etwa 1048 Konformationen.  Die Rotation um Bindungen geschieht höchstens 1014 mal pro Sekunde. Daher dauert eine Zufallssuche nach der richtigen Konformation etwa 1034s = 1026 Jahre, viel länger als das Alter des Universums! Die kritische Annahme dabei ist, dass alle möglichen Konformationen mit der gleichen Wahrscheinlichkeit gesampelt werden. Der Faltungstrichter sieht also wie ein Loch auf einem flachen Golfplatz aus. Daher wurde vermutet, dass bestimmte Faltungspfade existieren, die zur gefalteten Struktur führen. 13. Vorlesung SS 2005 Computational Chemistry

Computational Chemistry Golfkurs-Beispiel 1-D Energielandschaft. Im Fall extremer Frustration gibt es keine Korrelation zwischen struktureller Ähnlichkeit mit dem Grundzustand und der Energie. Einzige Möglichkeit:Zufallssuche. 13. Vorlesung SS 2005 Computational Chemistry

Lösung für Levinthal-Paradoxon: Folding Funnel Energielandschaft eines minimal frustrierten Heteropolymers. Die Trichterform ermöglicht, dass der gefaltete Zustand in kurzer Zeit erreicht wird. 13. Vorlesung SS 2005 Computational Chemistry

Modelle um Proteinfaltung zu beschreiben Nucleation-condensation-Modell Wetlaufer, D.B. (1973) PNAS 70, 697 Es werden einige kritische kinetische Nuklei geformt, um die herum der Rest der Struktur wächst. Framework Modell Ptitsyn, O.B. & Rashin, A.A. (1975) Biophys. Chem. 3, 1 Zunächst falten sich die Sekundärstrukturelemente. Diese docken dann im ratenlimitierenden Schritt zur 3D-Struktur. Modell des hydrophoben Kollapses Dill, K.A. (1985) Biochemistry 24, 1501 Treibende Kraft ist der hydrophobe Effekt. Wasser wird unspezifisch verdrängt. Die abschliessende Umordnung des kollabierten Zustands ist ratenlimitierend. 13. Vorlesung SS 2005 Computational Chemistry

Nucleation-condensation Modell Die ersten Schritte der Proteinfaltung sind entropisch ungünstig, durch den Verlust an Entropie aufgrund der reduzierten Beweglichkeit der Seitenketten. Der enthalpische Gewinn durch entstehende native Wechselwirkungen kann dies nicht ganz kompensieren. Erst im Übergangszustand (transition state) werden die beiden Beiträge gleichgroß. Danach geht die Faltung downhill. 13. Vorlesung SS 2005 Computational Chemistry

Computational Chemistry Framework-Modell gewann an Bedeutung als man kleine Sekundärstrukturelemente-Fragmente von Proteinen identifizieren konnte, die bereits in Lösung gefaltet sind. (Munoz, Serrano 1994-1997). 13. Vorlesung SS 2005 Computational Chemistry

Auch native Kontakte passen zum Framework-Modell * native Kontakte sind essentiell  Hypothese, daß es kleine Peptidstücke gibt, unabhängig faltende Einheiten, sogennante Foldons Beispiele: -hairpins (Munoz&Eaton), die sich in ca. 6 s falten kleine Fragmente aus BPTI (SYPFDV) * Langevin-Simulationen zeigen: -Helices falten sich in ca. 10-100 ns -hairpins brauchen ca. 10 s a: Ar(i)-HN(i) Wechselwirkung zwischen Phe517 und der Amidgruppe des Rückgrats von Tyr518 in Phosphoinoitide-Specific Phospholipase C (1DJX). b: Ar(i)-HN(i) Wechselwirkung in Ascorbate Oxidase (1AOZ). Tóth et al. Proteins 43, 373 (2001) 13. Vorlesung SS 2005 Computational Chemistry

Computational Chemistry Molten Globule Modell des hydrophoben Kollapses sagt ein Faltungs-Intermediat voraus, den sogenannten Molten Globule, den man kinetisch und im Gleichgewicht als eine expandierte Form des gefalteten, nativen Zustands charakterisiert hat. 13. Vorlesung SS 2005 Computational Chemistry

Computational Chemistry Neue Methoden Hydrogen-Exchange: H/D-Austausch der Backbone HN-Atome gegen D/H-Atome der Lösung. Gibt Information über Faltungs-Intermediate: ist diese Gruppe solvenszugänglich? Konsolidierung des Protein-Rückgrats. Protein Engineering (Mutagenese): sensitiv für Seitenketten-Wechselwirkungen. Entdeckung von kleinen Proteinen mit lediglich zwei Zuständen (gefaltet  entfaltet) CI-2 spectrin SH3 cold shock protein CspB Bisher wurden etwa 30 Proteine mit dieser Methode untersucht. 13. Vorlesung SS 2005 Computational Chemistry

Mechanismus der Proteinfaltung (Fersht) (a) zwei extreme Szenarien: „Framework“ bedeutet, dass sich die 2nd-Strukturelemente zuerst falten. „Nucleation condensation“ ist ein Kompromiss zwischen den beiden Extremfällen. (b) Proteine, die man einer oder der anderen Kategorie zuordnen kann. Bisher wurde kein Protein gefunden, das einen reinen Hydrophoben Kollaps zeigt, also während des Kollapses keine 2nd-Struktur formt. Daggett, Fersht, TIBS 28, 18 (2003) 13. Vorlesung SS 2005 Computational Chemistry

Faltung kleiner Proteine Nucleation-condensation wird heute als Standardmechanismus für die Faltung kleiner Proteine angesehen (Serrano und Mitarbeiter, PNAS 99, 15846 (2002)). Manche Proteine falten jedoch auf eine polarisierte Weise, wobei sich ein Teil der Struktur sehr früh bildet und andere Abschnitte bis zuletzt unstrukturiert bleiben. CI-2 2-Zustand global diffus:alle Residuen falten sich gleichzeitig SH3 2-Zustand im Übergangszustand ist eine Region des Proteins fast vollständig gefaltet, eine andere jedoch nur kaum. Barnase zwei Faltungsmodule falten sich unabhängig voneinander zu Intermediat gemäss NC-Mechanismus Dann docken diese beiden Module gemäss Framework-Modell. 13. Vorlesung SS 2005 Computational Chemistry

„New view of Protein folding“: Faltung auf rauhen, trichterförmigen Energielandschften Bryngelson, Wolynes, PNAS (1987) gradient  roughness macht Faltung macht Faltung schneller langsamer “Frustration” Brooks, Gruebele, Onuchic, Wolynes, PNAS 95, 11037 (1998) 13. Vorlesung SS 2005 Computational Chemistry

Energielandschaft mit unterschiedlicher Frustration Links: hoch frustrierte Landschaft mit Tg > Tf. Rechts: geringe Frustration; Tg < Tf; Ähnlichkeit mit Trichterform 13. Vorlesung SS 2005 Computational Chemistry

Theorie der Energielandschaften für Proteinfaltung nach Onuchic, Nymeyer, Garcia, Chahine, Socci, Adv. Prot. Chem. 53, 87 (2000) http://guara.ucsd.edu/group/Folding-papers.html „Holy grail“: Proteinsequenz  Proteinstruktur Entwicklung von theoretischen Konzepten, mit denen man sich faltende von sich nicht faltenden Sequenzen unterscheiden kann. P.S. Kim & R.L. Baldwin (Annu Rev BioChem 59, 631 [1990]): Faltung geschieht entlang von Pfaden mit wohldefinierten Intermediaten. Diese Sichtweise wurde seit Beginn der ´90er Jahre durch das Bild der Faltung eines Proteins in einem Faltungstrichter der Energie ersetzt. Faltung ist ein kollektiver (d.h. die Faltung der Aminosäurenkette beginnt an vielen Positionen gleichzeitig) und selbst-organisierter Prozeß Faltung geschieht entlang einer Vielzahl von Routen bis auf den Boden des Faltungstrichters. 13. Vorlesung SS 2005 Computational Chemistry

Computational Chemistry Rolle der Topologie D. Baker, Nature 405, 39 (2000) Für viele Proteine ist die Faltungsgeschwindigkeit durch das Verhältnis von lokalen zu nicht-lokalen Kontakten bestimmt. a bis d. rot: grosser Einfluss auf Faltungsrate, blau: kleiner Einfluss. e: Kontakt-Ordnung: mittlerer Sequenz-Abstand räumlich benachbarter Amino-säuren; normiert über die Gesamtlänge des Proteins. f: überraschend deutlicher Zusammenhang zwischen der Faltungsgeschwindigkeit von Proteinen und ihrer Kontakt-Ordnung. 13. Vorlesung SS 2005 Computational Chemistry

Computational Chemistry -value Analyse Studiere den Effekt von Mutationen auf die Kinetik und Stabilität der Proteinfaltung. Die grüne Residue hat im Übergangszustand (TS) fast die gleiche Umgebung wie im gefalteten Protein (N). Daher wird TS um den gleichen Betrag destabilisiert wie N. Umgekehrtes gilt für die blaue Residue. ´ kennzeichnet Daten für eine Mutante Daggett, Fersht, TIBS 28, 18 (2003) 13. Vorlesung SS 2005 Computational Chemistry

Proteinfaltung mit Simulationen Faltung von -Helices und -Faltblättern dauert 100 ns bis 10 s. MD-Simulation auf einem Prozessor mit 2 fs Zeitschritt würde Jahre dauern. verschiedene Auswege aus diesem Dilemma Vereinfachung der Proteindarstellung (HP- oder Go-Modelle) 0 steered Molecular Dynamics – Entfaltung unter Zwangskraft. Problem: Freies Energieprofil ist pfadabhängig (wird nicht behandelt). 1 Simulation der Entfaltung bei erhöhter Temperatur 2 systematische Variation entlang eines Faltungsparameters liefert die Hyperfläche der Freien Enthalpie 3 “distributed computing” – Faltungskinetik aus zahlreichen kurzen Simulationen 13. Vorlesung SS 2005 Computational Chemistry

Entfaltungssimulationen bei erhöhter Temperatur Faltung von CI2 Kristallstruktur. (b) Entfaltungssimulation bei 100 K. Umgekehrte Reihen- folge der Schnappschüsse. „S“ – Werte: charaktisiert Packungswech-selwirkungen der Residue und ihrer lokalen 2nd-Struktur. Gute Korrelation mit experimentel-len -Werten. Daggett, Fersht, TIBS 28, 18 (2003) 13. Vorlesung SS 2005 Computational Chemistry

Computational Chemistry Faltung von Barnase (a) NMR-Struktur von Barnase. (b) MD-Schnappschüsse von 225°C Simulation. (c) Korrelation von S und . Gute Übereinstimmung bis auf grüne Boxen (2-Helix). Ihr helikaler Anteil im TS, aber auch im entfalteten Zustand ist in MD-Simulation grösser. Eventuell bedeutet dies, dass die -Analyse solch autonom faltende Einheiten nicht gut beschreiben kann. Daggett, Fersht, TIBS 28, 18 (2003) 13. Vorlesung SS 2005 Computational Chemistry

MD erlaubt detaillierte Einblicke in Faltungsprozess Daggett, Fersht, TIBS 28, 18 (2003) 13. Vorlesung SS 2005 Computational Chemistry

Faltung der engrailed homeodomain (a) Übergangszustände bei 100°C und 225°C sind sehr ähnlich. Erhöhung der Temperatur bewirkt also vermutlich keine Veränderung des allgemeinen Faltungs- pfades, sondern beschleunigt lediglich die Faltung/Entfaltung. (b) Helices sind selbst im denaturierten Zustand stabil. Die engrailed homeodomain ist also ein Beispiel für ein Protein, das gemäss dem Framework-Modell faltet. Daggett, Fersht, TIBS 28, 18 (2003) 13. Vorlesung SS 2005 Computational Chemistry

Computational Chemistry Rolle der Topologie Proteine mit SH3-ähnlicher Struktur. Die Farbkodierung folgt den -Werten: blau für kleine -Werte, rot für grosse -Werte. Je grösser der -Wert, desto mehr gefaltet ist die entsprechende Region in der Region des Übergangszustands. „Topologie ist nicht alles“ Die Unterschiede in dem Faltungsverhalten dieser 3 Proteine lassen sich nur durch spezifische Wechselwirkungen erklären. Schymkowitz et al. PNAS 99, 15846 (2002) 13. Vorlesung SS 2005 Computational Chemistry

Faltungssimulation entlang Reaktionskoordinate: src-SH3 Domäne Kristallstruktur 1SRL (a) 6.5 Å contact map zwischen nicht-benach- barten Residuen für die Kristallstruktur. (b) contact maps aus MD-Simulationen für =0.2 (über Diagonale) =0.4 (unter Diagonale) (c) =0.6 (über Diagonale) =0.8 (unter Diagonale)  entspricht der Anzahl an nativen Kontakten. Shea, Onuchic, Brooks, PNAS 99, 16064 (2002) 13. Vorlesung SS 2005 Computational Chemistry

Faltung der src-SH3 Domäne (a) pmf bei 298 K als Funktion der Anzahl nativer Kontakte: Profil zeigt klar downhill. (b) und (c) Erweiterung von (a) um den Gyrations-Radius bzw. die Anzahl an Wassermolekülen im Kern. (d) Überlagerung von 3 Entfaltungssimulationen bei 400 K. Profile wurde mit einem Zwangs- potential entlang von  erzeugt. Shea, Onuchic, Brooks, PNAS 99, 16064 (2002) 13. Vorlesung SS 2005 Computational Chemistry

Faltungssimulation mit Distributed Computing für BBA5, ein Designer-Protein Das Design des 23-Residuen langen BBA5-Motifs (-Hairpin / turn / -Helix) wurde von der Faltung von Zinkfinger inspiriert. NMR-Struktur von BBA5 Doppelmutante (2.2 Å) Doppelmutante (2.4 Å) Einzelmutante (2.5 Å) BBA5 besitzt starke Tendenz, Sekundärstruktur- elemente zu formen und kleinen hydrophoben Kern. Daher ist der Effekt von Ungenauigkeiten des Kraftfelds vielleicht eher klein. 13. Vorlesung SS 2005 Computational Chemistry

Computational Chemistry Folding@Home Faltungssimulation von 10 s Länge auf einem Prozessor würde Jahrzehnte dauern, selbst mit implizitem Solvens. Distributed computing (Folding@home): simuliere 10.000 Simulation von jeweils 5 - 20 ns Länge mit implizitem Solvensmodell. Für ein kleines Protein mit einer Faltungszeit von 10 s sollten etwa 10 von 10.000 Simulation innerhalb von 10 ns gefaltet sein. Folding@home: 30.000 Heimbenutzer stellten ihre PCs über Monate zur Verfügung um MD-Simulationen während idle-Zeit laufen zu lassen. Die akkumulierte CPU-Zeit entspricht ca. 1 Millionen CPU-Tage! Es wurden über 100 unabhängige Faltungsvorgänge beobachtet. 13. Vorlesung SS 2005 Computational Chemistry

Faltungstrajektorien für Doppelmutante Cα backbone (blau 1-3 und 6-8, rot 11-21) und ausgewählte Seiten-ketten (Y1 Y3 Y6 W8 E13 L14 L17 L18) für Faltungstrajektorien, die nahe der nativen BBA5- Struktur enden (unten). a, 2.2 Å b, 2.4 Å c, 2.6 Å d, 3.0 Å e, Natives BBA5 f, Natives BBA1 mit artifizieller Aminosäure Fen in Orange g, Homologie-Model für Doppelmutante h, anderes Homologie-Modell. 13. Vorlesung SS 2005 Computational Chemistry

Energie-Landschaft der Faltung Logarithmierte Population von verschiedenen Kombinationen aus RMSDca und Gyrations-Radius für a, 9000 sich faltende Trajektorien nach 1 ns, die aus einem gestreckten Zustand gestartet wurden. b, dieselben Trajektorien nach 20ns c, 2500 Simulationen des nativen Zustands nach 10 ns. Nach 20 ns ist das entfaltete Ensemble so kompakt wie das gefaltete Ensemble (Radius of Gyration, y-Achse). Es gibt aber nur einen kleinen Überlapp zwischen b und c: Ein kleiner Teil des gefalteten Ensembles (c) ist nach 10 ns teilweise entfaltet, und ein kleiner Teil des entfalteten Ensembles ist nach 20 ns gefaltet (b). 13. Vorlesung SS 2005 Computational Chemistry

Zunahme an Sekundärstruktur in Doppelmutante (a) Helikale Strukturen (278K). b, Hairpin-Structuren (278K). c, Präsenz von mindestens 4 α-helikalen Residuen. d, Population eines richtigen β-Hairpins um Residuen 4-5. Native Ensembles sind gezeigt bei 278, 378, und 478 K ( □, +, und ). Faltende Ensembles bei 278 und 338 K sind mit ▪ und ∆ markiert. Der entfaltete Zustand ist zu ~40% α-helikal. 13. Vorlesung SS 2005 Computational Chemistry

Exp. Faltungs-Thermodynamik und –kinetik von BBA5 CD-Spektra. Die isodichroischen Punkte (rot) deuten auf Zwei-Zustands-Modell hin. Normalisierte Fluoreszenzspektren. Temperatur-Sprung durch 10 ns Laserpuls induziert teilweise Entfaltung. Zeitaufgelöste Beobachtung der um 11 nm rotverschobenen Fluoreszenz. Exp. Faltungszeit 7.5 ± 3.5 s Simulation: 6 s Quantitative Übereinstimmung! Snow et al. Nature 420, 102 (2002) 13. Vorlesung SS 2005 Computational Chemistry

Zunahme der gefalteten Zustände Faltung in den Simulationen. Bei höherer Temperatur geschieht Zunahme ca. 2 mal so schnell. Snow et al. Nature 420, 102 (2002) 13. Vorlesung SS 2005 Computational Chemistry

Unfolded states and transition states Understanding protein folding not only involves predicting the folded structures of foldable sequences. In order to characterize the stability of a protein need free energy difference between folded and unfolded structure  what is the structural ensemble of „the unfolded state“? In order to understand kinetics of folding process need structure of transition state Difficult to characterize these structures by experiments. Simulations are ideal tools. 13. Vorlesung SS 2005 Computational Chemistry

The protein folding network Transition states for protein folding have native topologies despite structural variability, Kindorff-Larsen, Vendrusculo, Paci & Dobson, Nat. Struct. Biol. 11, 443 (2004) Michele Vendrusculo Chris Dobson Emanuele Paci 13. Vorlesung SS 2005 Computational Chemistry

Structure and sequences of SH3 domains used Native state structure of the src SH3 domain colored from its N (red) to C terminus (blue). Sequence alignment of the three SH3 domains from src, Fyn and -spectrin. Residues in -strands are green and those in 310 -helices are blue. The nine boxed positions (I–IX) are the major hydrophobic core residues. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) 13. Vorlesung SS 2005 Computational Chemistry

Representations of the transition state ensemble (TSE) (a) Three members of the TSE traced within an atomic density map20 calculated from the backbone atoms of 20 representative structures from the TSE. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) 13. Vorlesung SS 2005 Computational Chemistry

Structure and sequences of SH3 domains used (b) The red ( = 500 K) and green ( = 640 K) points show the spread in radius of gyration and structural diversity in the TSE. The black points represent the comparable data from the native state ensemble. Four structures representative of different regions of the plot are colored according to the conformational variability (blue: RMS  1Å, red: RMS > 8Å Conformations of central 3-stranded sheet (2 - 4) are much less variable than those of 1 and 5. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) 13. Vorlesung SS 2005 Computational Chemistry

Energy maps of native state and TSE of src SH3 (c) Ensemble-averaged pairwise interaction energies between residues in the native state (above diagonal) and in the TSE (below diagonal). Many features found in the native state are also found in the TSE: interactions between (2 - 4), in particular between 3 and 4. part of the RT loop packs on to 4. Surprising: although strands 1 and 5 are relatively disordered (previous slide) the interactions formed are very similar to those in the native state. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) 13. Vorlesung SS 2005 Computational Chemistry

TSEs of SH3 domains from -spectrin and Fyn (a,b) TSEs of (a) -spectrin SH3 domains and (b ) Fyn SH3 domains. Color coding according to the conformational variability as before. Overall similarity to src-SH3 differences - e.g. that RT loop does not pack onto to the rest of the protein (Fyn). conformational variability of -spectrin SH3 (RMSD of C 3.0 Å) smaller than of src (5.4 Å) and Fyn (6.0 Å) two TSE structures energy maps of the native state (above diagonal) and transition state (below diagonal). Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) 13. Vorlesung SS 2005 Computational Chemistry

Native topology in the transition state? Either direct examination of 3D structures, or interaction energy maps suggest that TSE is characterized by overall native-like topology. Quantify the topological similarity between TSE and native state Here use DALI server; alignment of matrices of pairwise C distances. to generate a representative set of structures of small proteins: extract 311 domains of length 40-70 residues from SCOP domain database. 179 can be meaningful aligned to src SH3. 11 domains have Z-score > 9.0. All of them are SH3 domains. 168 have Z < 4.3. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) 13. Vorlesung SS 2005 Computational Chemistry

Native topology in the transition state? align 500 TSE structures to these 311 domains. In 479/500 cases, the best-matching SCOP-domain is an SH3 domain!  despite their local variability, a large majority of the calculated TSE structures have the fold characteristic of an SH3 domain. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) 13. Vorlesung SS 2005 Computational Chemistry

DALI alignment of TSE structures against SCOP domains Z-score > 5 indicates high structural similarity. Therefore, the structural similarity between the TSE and the best-matching SCOP is in fact quite low. the large majority of TSE structures are located in the outer periphery of the region of conformational space that corresponds to the SH3 fold. The rate-limiting step in folding seems the formation of a conformation with the global topology of the native state, see lecture 7. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) 13. Vorlesung SS 2005 Computational Chemistry

Solvent accessibility and secondary structure Relative solvent accessible surface area in the native state (black) and transition state (red) of src SH3. Arrows, the five native -strands. Many portions of the protein are only partially desolvated in the TSE! Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) 13. Vorlesung SS 2005 Computational Chemistry

Solvent accessibility and secondary structure Does secondary structure formation have a primary role in protein folding? DSSPcont  most highly formed elements are strands 3 and 4 (formed in > 60% TSE structures of src and Fyn and in > 45% for spectrin). Diverging turn preceding 2 also substantially populated. Experimentally, no isolated hairpin has structure. Hairpin between 3 and 4 must be stabilized by tertiary interactions. However, peptide corresponding to diverging loop adopts turn in solution. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) 13. Vorlesung SS 2005 Computational Chemistry

Network of interactions in native and transition states (a) Native state structure of src SH3. The residues in the hydrophobic core are shown in green and in ball-and-stick. (b,c) Graph representation of the interactions in (b) the native state and (c) the transition state. The nodes on the graphs in b and c are colored using the scheme shown in a. Only noncovalent interactions between amino acids more than two residues apart are considered. Network in TSE is less condense, contains critical interactions of hydrophobic core. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) 13. Vorlesung SS 2005 Computational Chemistry

Key network of interactions in the folding TS Each point in the plot represents the result of a TSE determination of src SH3 using one of 220 triplets of residues. The S-score measures the topological similarity with the native state; high S -scores indicate high similarity. We encircle triplets in the plot when these contain residues at core position VII (Ala37, blue) and VIII (Ile48, yellow). Highlighted in the protein structure at the bottom left are six of the hydrophobic core residues corresponding to core positions III–VI colored with core positions III and IV green, V and VI red, VII blue and VIII yellow. Bottom right, interaction network among these six residues in the native and transition states, colored according to the same code. Lines are drawn when the average pairwise interaction energy is lower than -0.5 kcal mol. Solid lines, interactions present in both the native and transition states; dashed lines, interactions present in the native state only. Lindorff-Larsen, Vendrusculo, Paci, Dobson, Nat Struct Biol 11, 443 (2004) 13. Vorlesung SS 2005 Computational Chemistry

Computational Chemistry Trends * Konzentration auf realistischere Modelle um wirkliche Proteine zu simulieren * Einfluß äußerer Effekte (z.B. Kräfte oder Viskosität) * Einfluß von Chaperonins * Einfluß der Viskosität auf Faltungsdynamik. wurde seit langem vorhergesagt, z.B. durch Simulationen, und wurde vor kurzem zum ersten Mal exp. bestätigt.  Diffusion wichtig für Proteinfaltung (z.B. Simulation durch Brownian Dynamics Simulationen) es sollte nicht die Transition-State-Theorie verwendet werden, sondern die Kramersche Theorie 13. Vorlesung SS 2005 Computational Chemistry

Computational Chemistry Fazit L. Serrano und Mitarbeiter, PNAS 99, 15846 (2002): Im Feld der „Protein-Falter“ ist nun anerkannt, dass die Kombination von Experiment mit Theorie/Simulation die verbliebenen Rätsel der Proteinfaltung lösen werden. Die Modelle können wohl nur dann streng überprüft und verbessert werden wenn das experimentelle Know-how eine nächste Stufe erreicht. Ein Schritt hier: experimentelle Untersuchung von Einzelmolekülen! Die Anstrengungen und Erfahrungen im Blue-Gene-Projekt von IBM in einer Vielzahl von Kollaborationen werden für die theoretische Seite eine umfassende Evaluation der bestehenden Methoden bedeuten. Neue Techniken wie Replica-Exchange bewirken immer wieder signifikante Verbesserungen. 13. Vorlesung SS 2005 Computational Chemistry