Mit Strategie zur dynamischen IT Hochverfügbare IT Infrastrukturen

Slides:



Advertisements
Ähnliche Präsentationen
Developing your Business to Success We are looking for business partners. Enterprise Content Management with OS|ECM Version 6.
Advertisements

FlashCopy Lösungen für mySAP™ Business Hugo Boss
Anzahl der ausgefüllten und eingesandten Fragebögen: 211
Vorlesung: 1 Betriebliche Informationssysteme 2003 Prof. Dr. G. Hellberg Studiengang Informatik FHDW Vorlesung: Betriebliche Informationssysteme Teil3.
LS 2 / Informatik Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)
Übersicht RAID-Verfahren Labor für Betriebsdatenverarbeitung
Karo IT Viehmarkt Neumarkt Karo IT Neumarkt GmbH | Tel.:
Virtual Storage Das Fundament für Total Enterprise Virtualization.
Systemverwaltung wie es Ihnen gefällt.
Telefonnummer.
Modelle und Methoden der Linearen und Nichtlinearen Optimierung (Ausgewählte Methoden und Fallstudien) U N I V E R S I T Ä T H A M B U R G November 2011.
1 JIM-Studie 2010 Jugend, Information, (Multi-)Media Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
Rechneraufbau & Rechnerstrukturen, Folie 2.1 © W. Oberschelp, G. Vossen W. Oberschelp G. Vossen Kapitel 2.
Virtualisierung bei der GWDG, Struktur
Internet facts 2008-II Graphiken zu dem Berichtsband AGOF e.V. September 2008.
Vorlesung: 1 Betriebssysteme 2007 Prof. Dr. G. Hellberg Studiengang Informatik FHDW Vorlesung: Betriebssysteme Hochverfügbarkeit (Einführung) 3. Quartal.
Vorlesung: 1 Betriebssysteme 2008 Prof. Dr. G. Hellberg Studiengang Mechatronik FHDW Vorlesung: Betriebssysteme Hochverfügbarkeit (Einführung) 2. Quartal.
Vorlesung: 1 Betriebliche Informationssysteme 2003 Prof. Dr. G. Hellberg Studiengang Informatik FHDW Vorlesung: Betriebliche Informationssysteme Teil2.
Gerlind Bruschek AK-SYS 2007 Erfahrungen beim Einsatz vom Bladeservern an der Hochschule Magdeburg-Stendal (FH) 1. Bisherige Server-Infrastruktur 2. Neue.
Virtualisierungslösungen
Differentielles Paar UIN rds gm UIN
AFS-Workshop 2005 Statusbericht Rechenzentrum TU Braunschweig
Prof. Dr. Bernhard Wasmayr
Studienverlauf im Ausländerstudium
Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)
Prof. Dr. Bernhard Wasmayr VWL 2. Semester
AWA 2007 Natur und Umwelt Natürlich Leben
HP StorageWorks All-in-One Speichersystem
Raid 0.
Rechneraufbau & Rechnerstrukturen, Folie 12.1 © W. Oberschelp, G. Vossen W. Oberschelp G. Vossen Kapitel 12.
Distanzbasierte Sprachkommunikation für Peer-to-Peer-Spiele
2 Distanzbasierte Sprachkommunikation für Peer-to-Peer-Spiele.
Prof. Dr. Günter Gerhardinger Soziale Arbeit mit Einzelnen und Familien Übersicht über die Lehrveranstaltung Grundlegende Bestimmungsfaktoren der Praxis.
IGEL UMS Universal Management Suite Oktober 2011 Florian Spatz
20:00.
Bewertung von Cloud-Anbietern aus Sicht eines Start-ups
SKALIERBARE HARDWARE UNABHÄNGIGE LÖSUNGEN FÜR HSM, ARCHIVIERUNG UND SICHEREN DATENAUSTAUSCH YOUR DATA. YOUR CONTROL.
Microsoft Cloud OS Auf dem Weg zum optimierten Rechenzentrum
Netzwerke | Serversysteme | Client-Service | Groupware Darmstadt The Game Changer Microsofts Hyper-V v3 & HPs Insight Online Thorsten Podzimek,
Zusatzfolien zu B-Bäumen
Timo Brueggemann Director Business Development EMEA Stratus Technologies Die Lösung für Hochverfügbarkeit unkompliziert sicher bezahlbar.
Citrix MetaFrame Access Suite
Eine Einführung in die CD-ROM
Thats IT!. Titelmasterformat durch Klicken bearbeiten Über uns Mit uns bekommen Sie: Beratung – Doing - Betreuung langjährige Erfahrung umfassende Beratung.
GBI Genios Wiso wiso bietet Ihnen das umfassendste Angebot deutsch- und englischsprachiger Literatur für die Wirtschafts- und Sozialwissenschaften. Wir.
Dokumentation der Umfrage
SSDs im SAN – Praxisbericht Teil3
Syntaxanalyse Bottom-Up und LR(0)
Service Computing   Prof. Dr. Ramin Yahyapour IT & Medien Centrum 19. Januar 2010.
PROCAM Score Alter (Jahre)
Ertragsteuern, 5. Auflage Christiana Djanani, Gernot Brähler, Christian Lösel, Andreas Krenzin © UVK Verlagsgesellschaft mbH, Konstanz und München 2012.
Flexible Datensicherung für kleine und mittlere Unternehmen
Windows Server 2012 R2 Upgrade-Potential
Geometrische Aufgaben
Symmetrische Blockchiffren DES – der Data Encryption Standard
Zahlentheorie und Zahlenspiele Hartmut Menzer, Ingo Althöfer ISBN: © 2014 Oldenbourg Wissenschaftsverlag GmbH Abbildungsübersicht / List.
MINDREADER Ein magisch - interaktives Erlebnis mit ENZO PAOLO
1 (C)2006, Hermann Knoll, HTW Chur, FHO Quadratische Reste Definitionen: Quadratischer Rest Quadratwurzel Anwendungen.
Effizienz durch VIRTUALISIERUNG
Schutzvermerk nach DIN 34 beachten 20/05/14 Seite 1 Grundlagen XSoft Lösung :Logische Grundschaltung IEC-Grundlagen und logische Verknüpfungen.
SSDs im SAN - Praxisbericht Erich Eckel Österreichische Lotterien Storage Management.
Folie Beispiel für eine Einzelauswertung der Gemeindedaten (fiktive Daten)
LANiS Modul Desaster & Recovery. Desaster & Recovery-Techniken = hohe Verfügbarkeit durch weitgehend automatisiertes Sichern und Wiederherstellen eines.
Unternehmensbewertung Thomas Hering ISBN: © 2014 Oldenbourg Wissenschaftsverlag GmbH Abbildungsübersicht / List of Figures Tabellenübersicht.
Folie Einzelauswertung der Gemeindedaten
Datum:17. Dezember 2014 Thema:IFRS Update zum Jahresende – die Neuerungen im Überblick Referent:Eberhard Grötzner, EMA ® Anlass:12. Arbeitskreis Internationale.
Was spricht für EMC für SQL?
1 Medienpädagogischer Forschungsverbund Südwest KIM-Studie 2014 Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
Hadoop-as-a-Service (HDaaS)
Studiengang Informatik FHDW
 Präsentation transkript:

Mit Strategie zur dynamischen IT Hochverfügbare IT Infrastrukturen >> Ihr Ansprechpartner Mathias Wolf SIGMA Chemnitz GmbH Bereichsleiter Systemtechnik Am Erlenwald 13 09128 Chemnitz 11.06.2008 zur letzten Seite

Wir über uns SIGMA in Chemnitz: Gesellschaft für Systementwicklung und Datenverarbeitung mbH SIGMA in Stuttgart: Software und Consulting GmbH Gründung: Mai 1990 Mitarbeiter: 45 Jahresumsatz: ca. 6 Mio. € zurück zur 1. Seite

Geschäftsfelder unserer Sparten Service · IT-technische Innovationen · Infrastrukturlösungen und erstklassiger Support Beratung · Ganzheitliche Prozessunterstützung und –optimierung · organisatorische Managementberatung · unternehmensweite Softwarelösungen Embedded Lösungen · Hochqualifizierte Eigenentwicklungen · Individuallösungen im Soft- und Hardwarebereich SIGMA in Leonberg · Betriebswirtschaftliche Standardsoftware · Produktdatenmanagement zurück zur 1. Seite

Partner und Lösungen Bitte hier einfügen als Partnerlogo: FSC, T-Systems; CITRIX, Netapp, EMC2, Tandberg, CA, Symantec, Legato, Overland CISCO zurück zur 1. Seite

Inhalt Hochverfügbare IT- Infrastrukturen Katastrophenschutz Technologien zur Daten- und Hochverfügbarkeit Praxisbeispiele zurück zur 1. Seite

Infrastruktur allgemein Backupbereich (Datensicherung) Bandllaufwerke Jukebox / Plattenarchive Storagebereich (Datenspeicherung) Plattenspeicher / Flash-Speicher Serverbereich (Datenverarbeitung) Mainframe Unix / Solaris Linux Win2003 ….. Client / Netzwerkbereich (Datenvisualisierung)

Durch Ausfallzeiten der IT verursachte Kosten Airline Reservation $ 89,500 $ 90,000 Home Catalog Sales Pro Stunde ! Pay per View $ 150,000 Banking $ 360,000 $ 370,000 Telecommunications $ 2,600,000 Credit Card Sales $ 6,450,000 Brokerage 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 [1000 $] Quellen: International Data Corporation, Gartner Group und Contingency Planning Research zurück zur 1. Seite

Konsequenzen eines Ausfalles Mögliche Konsequenzen eines Ausfalls: - Umsatzeinbußen - Geschäftsverluste - Kosten für Wartung- und Service - Kosten für Rollback einer Aktion - Strafen - Rechtliche Folgen - Verlust von Kunden - Imageverlust - Verlust von Menschenleben Es gilt also, Ausfallzeiten zu minimieren ! zurück zur 1. Seite

Mögliche Gründe für Ausfallzeiten HW –SW Fehler Sabotage Infrastruktur Naturkatastrophen Quelle: Disaster Recovery Strategies, IBM Redbook SG24-6844-00, 2002 zurück zur 1. Seite

Hochverfügbarkeit- was ist das ? Ein System gilt als hochverfügbar, wenn eine Anwendung auch im Fehlerfall weiterhin verfügbar ist und ohne unmittelbaren menschlichen Eingriff weiter genutzt werden kann. Anwender nimmt keine oder nur eine kurze Unterbrechung wahr. Hochverfügbarkeit (HA – High Availability) bezeichnet die Fähigkeit eines Systems, bei Ausfall einer seiner Komponenten einen uneingeschränkten Betrieb zu gewährleisten. permanent laufende Anwendung Anwendung nur “kurz” unterbrochen Redundanz von HW Komponenten Permanenz des Services SLA Qualität Permanenz des Systems Plattform Qualität zurück zur 1. Seite

Betriebsdauer – Ausfallzeit Definition Verfügbarkeit Erhöhung der Verfügbarkeit eines Systems, definiert durch IEEE als x 100 (%). Eine Hochverfügbarkeits-Konfiguration dient dazu, ungeplante Unterbrechungen (d.h. Ausfälle einzelner Betriebsmittel), sowie geplante Ausfallzeiten (z. B. HW-Wartungsfenster, Einbringen von SW-Korrekturen oder neuer SW) mit einer möglichst kurzen Unterbrechung des Produktionsbetriebes zu überstehen. Betriebsdauer – Ausfallzeit Betriebsdauer zurück zur 1. Seite

Verfügbarkeit Gesamtverfügbarkeit eines IT-Systems ist die geschlossene Betrachtung von Hardware und Software Hochverfügbarkeit ist keine spezielle Technologie, sie ist vielmehr ein Ziel, dass für die spezielle Situation in einer Firma maßgeschneidert werden muss. Sie ist eine Kombination aus Strategien, Technologien, Training der Mitarbeiter und verschiedenen Serviceprozessen, um Unterbrechungen zu minimieren. In der Praxis unterscheidet man zwischen geplanten und ungeplanten Unterbrechungen. zurück zur 1. Seite

Geplante / ungeplante Unterbrechung Anwendungen 8 % Andere 9 % DB Backup 52 % Software 13 % Netzwerk 10 % Hardware Bedienung 25 % 30 % 27 % 3 % 15 % geplante Unterbrechungen Etwa 90% ungeplante Etwa 10% Quelle: Metagroup zurück zur 1. Seite

Verfügbarkeitsstufen Ausfallzeit / Jahr 99.999 % 5 min. Hoch- verfügbar 99.99 % 52 min. 99.9 % 8,8 Std. Konventionell 99 % 3,7 Tage zurück zur 1. Seite

Die berühmten Neunen… Klasse Bezeichnung Verfügbarkeit Downtime pro Jahr 2 Stabil 99.0% 3,7 Tage 3 Verfügbar 99.9% 8,8 Stunden 4 Hochverfügbar 99.99% 52,2 Minuten 5 Fehlerunempfindlich 99.999% 5,3 Minuten 6 Fehlertolerant 99.9999% 32 Sekunden 7 Fehlerresistent 99.99999% 3 Sekunden Aber: Wann gilt ein System wieder als “verfügbar”? Power On Diagnose läuft durch ? System Prompt/ Adminshell ist da? Service für den Endbenutzer steht zur Verfügung ? zurück zur 1. Seite

Verfügbarkeitsmaßnahmen Failover –Lösungen (no single Point of failure) 5 Clustering Automatische Isolation von defekten Komponenten 4 Automatic Server Restart, Rekonfiguration Remote Management Hot swap Mechanismen 3 Hot plug / hot spare Lüfter, AC/DC, Platten, Tape Laufwerke, PCI boards, Redundanz 2 Lüfter, Netzteile, Steckkarten, Raid-Systeme Netzwerk- und Kontrolleranschlüsse 1 Auswahl Komponenten Qualität im Design und in Produktion, Hardwaremanagement, Monitoring & Warnung vor Ausfällen, Fehlerkorrektur Hauptspeicher (ECC) Fehlerkorrektur und Vermeidung zurück zur 1. Seite

Hochverfügbarkeit Maßnahmen Mit heutiger Technologie kann eine Verfügbarkeit von mehr als 99.99 % nur mittels eines Clusters erreicht werden. Maßnahmen: HW- und SW-mäßige Redundanz aller für die Produktion notwendigen Betriebsmittel, Softwaremäßige Überwachung der Betriebsmittel, Automatisierte Reaktionen auf Hard- und Softwarefehler (z.B. Verlagerung der Produktion auf ein anderes System, oder Rekonfigurationen), Bei geplanten Unterbrechungen kommandogesteuert die automatisierte Ausführung der notwendigen Aktionen, sowie Organisatorische Maßnahmen (Kompetenz der Mitarbeiter, Verbesserung der Service-Qualität, HV-Leitstand, Betriebsführungskonzept). zurück zur 1. Seite

Katastrophenschutz (KS) Im IT-Bereich ist Katastrophenschutz diejenige Vorsorge, welche nach einer teilweisen oder vollständigen Zerstörung eines Rechenzentrums die Wiederaufnahme der Produktion und damit der geschäftskritischen Anwendungen ermöglicht.  Unter einer Katastrophe soll der Ausfall eines Rechenzentrums durch Stromausfall oder Zerstörung (Brand, Wassereinbruch, Explosion, Erdbeben, Sturm, Sabotage etc.), oder etwas spezifischer der Ausfall eines Hosts und der räumlich in der Nähe aufgestellten Speicherperipherie oder auch nur von Teilen der Speicherperipherie, die aktuelle Produktionsdaten enthält, verstanden werden. zurück zur 1. Seite

Katastrophenschutz (KS) Katastrophen führen zu einem Abbruch des Produktionsbetriebs und erfordern die Verfügbarkeit aller Betriebsmittel, die für die Wiederaufnahme des Produktionsbetriebs erforderlich sind, auf einem Standby-RZ. Unter Standby-RZ versteht man ein räumlich mehr oder weniger weit entferntes RZ mit einer Hardware- und Software-Ausstattung, so dass die nach den KS-Anforderungen des Kunden relevanten Anwendungen des Produktions-RZs darauf ablauffähig sind. Auf den Systemen im Standby-RZ können im Normalbetrieb Anwendungen laufen, die im Katastrophen-Fall (mit geringerer Performance) weiterlaufen, oder (bei weniger hohen Verfügbarkeitsanforderungen) terminiert werden. zurück zur 1. Seite

Kombination von HV und KS Charakterisierung: HV und KS schließen sich nicht aus; sie können vielmehr hervorragend kombiniert werden. Idealzustand: Das wesentliche Merkmal von KS besteht darin, dass im Idealzustand über HV hinausgehend die für die Aufrechterhaltung des Produktionsbetriebes redundanten Betriebsmittel und Daten räumlich entfernt und damit gegenüber zerstörenden Einwirkungen am Produktionsort geschützt sind. HV = „Single failure recovery“ KS = „Site failure recovery“ BC-Cluster HV + räumliche Trennung = BC zurück zur 1. Seite

Kombination von HV und KS KS ohne HV: Rasche Wieder-aufnahme des Betriebs nach Ausfall eines RZs ist so wichtig, dass der Kunde dafür das Risiko von Ausfallzeiten in Kauf nimmt. HV ohne KS: Risiko einer Katastrophe wird vom Kunden in Kauf genommen. HV KS BC Business Continuity (HV und KS): Der Kunde will keine Störung seiner Geschäfts-prozesse, auch nicht im Katastrophen-Fall. zurück zur 1. Seite

Business Continuity (BC) Die wichtigen Geschäftsprozesse des Kunden sollen möglichst wenig gestört werden. Die Störungen können vielfältige Gründe haben und werden üblicherweise kategorisiert nach Zerstörung eines RZs:Störungen innerhalb eines RZs: Katastrophenschutz Hochverfügbarkeit zurück zur 1. Seite

Vom Einzelsystem zum BC-Cluster Netz Netz Netz RAID RAID RAID Local Site Remote Site Einzelsystem HV-Cluster BC-Cluster (HV+KS) zurück zur 1. Seite

Konfigurationsbereiche Ziel: Verfügbarkeiten von mindestens 99.99 %. Hierzu muss man die folgenden Konfigurationsbereiche einbeziehen: Client / Netz-Bereich ….. Server-Bereich ….. Mainframe Unix / Solaris Win2003 Linux Storage-Bereich ….. Netapp EMC2 HP / IBM / Storagtek Tape zurück zur 1. Seite

Anforderungen an ein HV-Konzept Durchführung folgender Aktionen ‒ gemäß den HV-Anforderungen des Kunden ‒ für jeden Bereich: Etablierung eines Clusters von Systemen Redundante Auslegung der Plattenspeicher mit Datenspiegelung, Redundante Auslegung der Netzkomponenten inkl. der Netzanschlüsse für die Server, Im Fehlerfall (idealerweise) automatische, bzw. bei geplanten Unterbrechungen gezielte Verlagerung von Anwendungen (inkl. ihren Umgebungen) auf ein anderes System (Standby System) Restart der Anwendungen auf diesem System. Berücksichtigung der Abhängigkeiten zwischen den Plattformen Praktische Umsetzung eines HV-Konzepts erfolgt mittels einer HV-Konfiguration, und von organisatorischen Maßnahmen. zurück zur 1. Seite

Vorteile eines HV-Clusters Geplante Unterbrechungen Beispiele Einführung, Austausch oder Upgrade von Hardware-komponenten (inkl. Wartung) Einführung, Austausch oder Upgrade von Software-komponenten (in System- und Anwendersoftware), und/oder die Einführung von Software-Korrekturen (in System- und Anwendersoftware). Vorteile eines HV-Clusters Am Standby-System kann man vor der Verlagerung einen Update/Upgrade des Betriebssystems oder der Anwendersoftware durchführen, ohne die Produktion zu stören, Falls gewünscht, können der Software-Update bzw. Upgrade auf dem ehemaligen Produktionssystem nachgezogen und danach die Anwendungen zu einem unkritischen Zeitpunkt dahin zurückverlagert werden, und Wenn nach der Verlagerung auf das Standby-System Probleme auftreten, kann automatisch auf das ehemalige Produktionssystem mit dem bisherigen Software-Stand zurückgeschaltet werden. zurück zur 1. Seite

Ungeplante Unterbrechungen Beispiele Ein Fehler in einer Hardware-Komponente wie einer CPU, einem peripheren Controller oder Gerät, oder einer Datenverbindung, Ein Fehler im Betriebssystem oder Netz, Ein Fehler in der Anwendung, Ein Bedienfehler des Operators oder System Administrators, und/oder Die Zerstörung des gesamten Rechenzentrums (“Katastrophen-Fall”).  Vorteile Automatische und rasche Ausfallerkennung ggf. automatische Übernahme der Produktion (Applikation) mit allen betroffenen Betriebsmitteln auf ein anderes System, und ggf. automatischer Restart der zur Produktion gehörenden Anwendungen an diesem System Die Ausfallerkennung selbst kann auf den verschiedenen Plattformen unterschiedlich realisiert sein. zurück zur 1. Seite

Disaster Recovery Technologien Datensicherung mit RAID Technik Backup-Systeme Continuous Data Protection (CDP) Cluster Image Replikation Virtualisierung zurück zur 1. Seite

Disaster Recovery Technologien Datensicherung mit RAID Technik Backup-Systeme Continuous Data Protection (CDP) Cluster Image Replikation Virtualisierung zurück zur 1. Seite

RAID Systeme               sind eine Kombination aus mehreren (austauschbaren) Festplatten. Die Bezeichnung RAID steht dabei für Redundant Array of Independent Disks. Die RAID-Systeme sind ausfallsicher, der Ausfall eines Einzellaufwerks gefährdet weder den Gesamtbetrieb noch die Daten. Hierfür verwendet das System einen Teil der Gesamtkapazität zum Speichern der Parity-Informationen.   zurück zur 1. Seite

RAID Level 0                   RAID 0 fasst mehrere Laufwerke zu einem großen logischen Laufwerk zusammen. Die Daten werden im Stripping Verfahren, abhängig von der Blockgröße, auf alle Platten verteilt. Bei diesem Verfahren können zwar Kapazität und Geschwindigkeit maximal genutzt werden, allerdings ohne Redundanz. zurück zur 1. Seite

RAID Level 1                   Durch Mirroring (Plattenspiegelung) werden die Daten einer oder mehrerer Platten auf die gleiche Anzahl zusätzlicher Platten übertragen. Eine höhere Lesegeschwindigkeit wird erreicht, da die Requests auf 2 Platten aufgeteilt werden können, die unabhängig voneinander arbeiten. (50 % der Kapazität werden für die Redundanz genutzt.) zurück zur 1. Seite

RAID Level 3/4                   Level 3/4 speichert alle Parity-Informationen auf einer Festplatte. Die Daten  werden im Stripping Verfahren auf die restlichen Platten verteilt. RAID 3 bietet eine hohe Transferrate und relativ kurze Zugriffszeiten. RAID Level 4 funktioniert wie Level 3, jedoch mit einem Stripping Faktor von einem Block und mehr, was noch bessere Zugriffsmöglichkeiten bewirkt. (10-20% der Kapazität werden für die Redundanz genutzt.) zurück zur 1. Seite

RAID Level 5                   RAID Level 5 verteilt Daten und Parity-Informationen gleichmäßig, blockbereichsweise auf die Platten. Damit ist jedes Laufwerk für einen bestimmten Blockbereich Parity-Laufwerk. Dadurch werden Lesezugriffe noch schneller. zurück zur 1. Seite

RAID 0+1 Kombination aus unterschiedlichen RAID-Level zurück zur 1. Seite

RAID Level 10 Kombination aus unterschiedlichen RAID-Level zurück zur 1. Seite

Disaster Recovery Technologien Datensicherung mit RAID Technik Backup-Systeme Continuous Data Protection (CDP) Cluster Image Replikation Virtualisierung zurück zur 1. Seite

Disaster Recovery Technologien Magnetbandspeicher sind abnehmbar und gehen Sturzfolgen immun sind sehr preiswert bieten ihnen die Möglichkeit, all ihre Daten an einem gesicherten Ort abzulegen bieten fast immer Rückwärtskompatibilität Magnetbänder sind auch heute noch das beste Medium für einfache und sichere Archivierung Title > 2 > 3 > 4 > 5 > 6 > 7 > 8 > 9 > 10 > 11 > 12 > 13 > 14 > 15 > 16 > 17 > 18 zurück zur 1. Seite

Disaster Recovery Technologien Datensicherung mit RAID Technik Backup-Systeme Continuous Data Protection (CDP) Cluster Image Replikation Virtualisierung zurück zur 1. Seite

Snapshot™ Technologie (NetApp) Blocks in LUN or File Blocks on the Disk Take snapshot 1 A B C A B C A Copy pointers only No data movement B C NetApp’s Data ONTAP is the first commercially available file system to use a modern pointer based file system. This has several benefits. For example, writes can occur sequentially, no matter what file is being written, to save disk head seeks. For the subject of this talk, we are going to see how a modern pointer based file system significantly helps with data management operations, like Snapshots. Snap 1 zurück zur 1. Seite 40

Snapshot™ Technologie (NetApp) Blocks in LUN or File Blocks on the Disk Take snapshot 1 A A Continue writing data Write data anywhere B1 B B C C B1 A discussion of the generic term “copy on write” is warranted. “Copy on Write” derived from virtual memory systems research. NTAP - WAFL “Write Anywhere” or more specifically “Write elsewhere” achieves “copy on write” EMC & others - A physical read and write is needed to achieve “copy on write” Note that Dave uses the generic “copy on write” term in white paper, but this DOES NOT mean that a physical read & write are needed. A B C Snap 1 zurück zur 1. Seite 41

Snapshot™ Technologie (NetApp) Blocks in LUN or File Blocks on the Disk Take snapshot 1 A B1 C A C B1 A Continue writing data B B C Take snapshot 2 Copy pointers only No data movement B1 A B C Snap 1 A B C Snap 1 Snap 2 zurück zur 1. Seite 42

Snapshot™ Technologie (NetApp) Blocks in LUN or File Blocks on the Disk Take snapshot 1 A A Continue writing data B B1 B C C2 C Take snapshot 2 B1 C2 Continue writing data Write data anywhere A B C Snap 1 A B1 C Snap 2 zurück zur 1. Seite 43

Snapshot™ Technologie (NetApp) Blocks in LUN or File Blocks on the Disk Take snapshot 1 Continue writing data A A B B1 B Take snapshot 2 C2 C C Continue writing data B1 C2 Take snapshot 3 Simplicity of model = Best disk utilization Fastest performance Unlimited snapshots A B1 C Snap 2 A B1 C2 Snap 3 zurück zur 1. Seite 44

Vollständige Integration in Windows Explorer seit Windows XP mit ServicePack 2 Standard in Windows 2003 zurück zur 1. Seite 45

Einblick in einen SnapShot zurück zur 1. Seite 46

Disaster Recovery Technologien Datensicherung mit RAID Technik Backup-Systeme Continuous Data Protection (CDP) Cluster Image Replikation Virtualisierung zurück zur 1. Seite

Servercluster Hochverfügbarkeit & Skalierbarkeit für File-, Mail-, Web-, Directory-Server ERP und Datenbankanwendungen Ausgefeilte Überwachung und Recovery Schützt gegen jede Art von Ausfällen (System, Applikation, HW/SW-Komponenten) Unterbrechungsfreier Datenzugriff Einfache Handhabung: GUIs und Wizards für Installation und Betrieb Wächst mit den Anforderungen – Erweiterbarkeit im laufenden Betrieb zurück zur 1. Seite

Clustering- diverse Grundformate und Nutzen Failover Cluster active/passive oder active/active Varianten HA der Applikation durch Failover  keine Dienstunterbrechung, Verfügbarkeit der Daten durch Shared disk-Array, HA der Daten durch Storage-Mirrors Nutzen: relative kurze Wiederherstellzeit für Applikation, Dienstebereitschaft abhängig von Datenbereitstellungszeit !! shared Disk Array zurück zur 1. Seite

Clustering- diverse Grundformate und Nutzen shared Disk Array Scalable Cluster Anwendung läuft parallel im Cluster, HA durch Parallelität HA der Applikation durch Resync der Instanzen Keine Diensteunterbrechung Shared Data-Lockmanagement, HA der Daten durch Storage- Mirrors Nutzen: Keine Diensteunterbrechung, da takeover statt failover, aufwändigeres Datenmanagement wegen “shared data“ zurück zur 1. Seite

Clustering- diverse Grundformate und Nutzen Load Dispatcher Load Balance Cluster Anwendung läuft multiple im Cluster, Lastverteilung auf Clusterknoten, HA der Applikation durch Restart und any-to-any failover  sehr geringe Dienstunterbrechung, evtl schlechtere Dienstequalität, Nutzen: geringe Diensteunterbrechung, Skalierung der Applikationen Shared Disk Array zurück zur 1. Seite

FCP, ISCSI, NFS, CIFS, HTTP. FTP Speichercluster FCP, ISCSI, NFS, CIFS, HTTP. FTP A A zurück zur 1. Seite 52

FCP, ISCSI, NFS, CIFS, HTTP. FTP Speichercluster FCP, ISCSI, NFS, CIFS, HTTP. FTP A B‘ zurück zur 1. Seite 53

FCP, ISCSI, NFS, CIFS, HTTP. FTP Speichercluster FCP, ISCSI, NFS, CIFS, HTTP. FTP A B A B zurück zur 1. Seite 54

FCP, ISCSI, NFS, CIFS, HTTP. FTP Speichercluster FCP, ISCSI, NFS, CIFS, HTTP. FTP A B A B zurück zur 1. Seite 55

FCP, ISCSI, NFS, CIFS, HTTP. FTP Speichercluster FCP, ISCSI, NFS, CIFS, HTTP. FTP A B A B B‘ A‘ zurück zur 1. Seite 56

FCP, ISCSI, NFS, CIFS, HTTP. FTP Speichercluster FCP, ISCSI, NFS, CIFS, HTTP. FTP A A‘ B B‘ zurück zur 1. Seite 57

FCP, ISCSI, NFS, CIFS, HTTP. FTP Speichercluster FCP, ISCSI, NFS, CIFS, HTTP. FTP A B‘ A‘ B zurück zur 1. Seite 58

x10sure bietet N:1-Verfügbarkeit und gemeinsam nutzbare Ressourcen Was ist X10sure x10sure bietet Hochverfügbarkeit für Windows-Server und -Anwendungen Bei Serverausfall springt automatisch das Ersatzsystem ein konsolidiert isolierte Server & Anwendungen Server und Speicher sind gemeinsam nutzbar und redundant ausgelegt Komponenten Windows / Linux Server VMware Virtual Machines als Option FibreCAT & NetApp Storage x10sure Software x10sure bietet N:1-Verfügbarkeit und gemeinsam nutzbare Ressourcen zurück zur 1. Seite

x10sure bietet dynamische Verfügbarkeit N+1 Verfügbarkeit 1 1 x10sure überwacht Server und Speicher Bei Ausfall automatischer FAILOVER auf Ersatzsystem Speichersystem und Speicherzugriff kann redundant ausgelegt und automatisch wiederhergestellt werden 2 2 3 Produktiv-Server 3 x10sure 4 Ausfall 4 5 5 6 6 Server-Images SAN-Storage 4 Ersatz Server x10sure bietet dynamische Verfügbarkeit zurück zur 1. Seite

Speicherkonsolidierung Server-Konsolidierung & -Virtualisierung Wie gelangt man durch x10sure zur strukturierten und zuverlässigen IT ? Phase #1 Speicherkonsolidierung Phase #2 Server-Konsolidierung & -Virtualisierung Phase #3 Überwachung & Wiederherstellung Anwendungs- + Datenkonsolidierung Migration der kompletten Software “Remote-Boot” aus Zentralspeicher TCO-Einsparungen gemeinsam genutzten Speicher mehr Datensicherheit zentrale, einfachere Verwaltung Konsolidierung + Virtualisierung Serverkonsolidierung mit homogenen Formaten Virtualisierung für optimale Auslastung + Hardwarereduktion Effiziente Nutzung und einfachere Verwaltung der Server Dynamic Service Levels N:1-HV senkt Investitionen Automatische Überwachung & Wiederherstellung Ausfallzeit geht runter, Zuverlässigkeit & Produktivität aller Anwendungen rauf Wertschöpfung zurück zur 1. Seite

Disaster Recovery Technologien Datensicherung mit RAID Technik Backup-Systeme Continuous Data Protection (CDP) Cluster Image Replikation Virtualisierung zurück zur 1. Seite

Ausgangssituation Daraus resultierende Probleme Kaum Synergien beim Handling Vielfältige Varianten bei OS und Treibern Komplexe Sicherungsverfahren unflexible Skalierbarkeit Überkapazitäten  Hoher Verwaltungsaufwand  Begrenzte Wachstumsmöglichkeiten  Einschränkungen bei HV Dezentrale Server Landschaft Unterschiedliche Server Modelle Unterschiedliche Ausstattung der Server Dezentrale Datenhaltung  Komplexität und niedrige Effizienz Virtual vs. Physical – Differences Is not created from Metal, its just a bunch of files Encapsulation makes it portable You can copy Virtual Machines and move them with a mouse click A Virtual Machine is Hardware independent A Virtual Machines always sees VMware hardware components You can move a Virtual Machine between different boxes, from a notebook to a big server and the Virtual Machine will not care zurück zur 1. Seite

Ohne Virtualisierung Schlecht ausgelastete Server Hohe Komplexität bei Hochverfügbarkeit Kaum Flexibilität bei Lastschwankungen Keine Dynamik in der Skalierung zurück zur 1. Seite

Virtualisierungsschicht Virtualisiert Traditionell Application Application OS OS Virtualisierungsschicht Hardware Hardware Virtualisierung macht Software unabhängig von Hardware Virtualisierung präsentiert Hardwareresourcen in einer Art, dass man auf diese optimaler zugreifen kann als in ihrer originären Form zurück zur 1. Seite

Mit Virtualisierung zurück zur 1. Seite

Virtualisierungsprodukte zurück zur 1. Seite

Zielkalkulation VM ware Host ΣS (NPS • FPS • CPS • LastPS) ΣAnzahl Zielsysteme= NPH • FPH • CPH • ZiellastHost ΣS für die Summe aller Server NPS Anzahl Prozessoren des zu konsolidierenden Servers FPS Taktfrequenz Prozessoren der zu konsolidierenden Server CPS, CPH CPU Faktor LastPS gemessene Last der zu konsolidierenden Server NPH Anzahl Prozessoren Host FPH Taktfrequenz Prozessoren Host ZiellastHost kalkulatorische Auslastung CPU Faktor mono core: 1 dual core: 1,5 dual core LV: 1,25 quad core: 2,5 quad core LV: 1,75 zurück zur 1. Seite

Virtuelle Tape Librarys UNIX W2K / Linux Mainframe Server Plattformen ESCON / FC SAN CentricStor Viele virtuelle Laufwerke Virtual Tape Appliance Intelligenz Reale Laufwerke & Libraries Remote libraries Lokale libraries zurück zur 1. Seite

Praxisbeispiele Bsp. 1 - Kunde mit dezentraler inhomogener IT Infrastruktur Bsp. 2 - Kunde mit nicht redundanter Infrastruktur Bsp. 3 - Kunde mit nicht hochverfügbarer Infrastruktur zurück zur 1. Seite

Beispiel 1 - Ist-Zustand zurück zur 1. Seite

Beispiel 1 - Ist-Zustand zurück zur 1. Seite

Beispiel 2 – nr. Infrastruktur zurück zur 1. Seite

Beispiel 2 – nr. Infrastruktur zurück zur 1. Seite

Bsp. 3 keine HV-Infrastruktur TX300 FCAT S80 RAID10 7x36GB MSCS LP9802

Bsp. 3 keine HV-Infrastruktur ca. 800m TX300 FCAT S80 FC-Switch (Fabric A) FC-Switch (Fabric B) RAID10 7x36GB FCAT SX80 7x73GB MSCS LP1050

Zusammenfassung Sicherung der Daten Sicherung der Applikation Sicherung des Standortes Wiederanlauf Kosten RAID Plattensysteme Periodische Bandsicherung Periodische Plattensicherung Kontinuierliche Sicherung auf Platte Speichersysteme NAS / SAN Imaging von Systemen Applikationscluster Standby Failover Virtualisierung Ausfallrechenzentrum Herkömmliche Wiederherstellungsverfahren sehen meist das Backup von Daten und die Neueinrichtung eines Servers vor. Neue Techniken berücksichtigen auch Applikationen, Prozesse und Standorte. Raid Plattensysteme: herkömmliche Methode der Datensicherung gegen Ausfall, neue Verfahren wie Raid DP (Raid 6, Raid 5e ) verkraften den Ausfall von 2 Platten. Nur zur Absicherung von Festplattenausfällen, andere Hardwarekomponenten bleiben ungeschützt, keine Standortabsicherung Periodische Bandsicherung: (Backupsysteme, Bandmedien oder Wechsler) sichern Daten und / oder Anwendungen Periodische Plattensicherung Kontinuierliche Sicherung auf Platte Speichersysteme NAS / SAN Imaging von Systemen Applikationscluster Standby Failover Virtualisierung Ausfallrechenzentrum zurück zur 1. Seite

Zusammenfassung Sicherung der Daten Sicherung der Applikation Sicherung des Standortes Wiederanlauf Kosten RAID Plattensysteme ja nein Kein Ausfall gering Periodische Bandsicherung ja, wenn Bänder verlagert werden langsam Periodische Plattensicherung ja, über Speichersysteme mittel Kontinuierliche Sicherung auf Platte Speichersysteme NAS / SAN integrierte Mirroring-Funktion Ja, mittels Virtualisierung ja, FC oder Ethernet-connect schnell hoch Imaging von Systemen bedingt ja, bei Verlagerung der Images Applikationscluster Schnell für Applikationen Standby Failover Virtualisierung ja (Mirroring) Ja (Failover) Ausfallrechenzentrum extrem Herkömmliche Wiederherstellungsverfahren sehen meist das Backup von Daten und die Neueinrichtung eines Servers vor. Neue Techniken berücksichtigen auch Applikationen, Prozesse und Standorte. Raid Plattensysteme: herkömmliche Methode der Datensicherung gegen Ausfall, neue Verfahren wie Raid DP (Raid 6, Raid 5e ) verkraften den Ausfall von 2 Platten. Nur zur Absicherung von Festplattenausfällen, andere Hardwarekomponenten bleiben ungeschützt, keine Standortabsicherung Periodische Bandsicherung: (Backupsysteme, Bandmedien oder Wechsler) sichern Daten und / oder Anwendungen Periodische Plattensicherung Kontinuierliche Sicherung auf Platte Speichersysteme NAS / SAN Imaging von Systemen Applikationscluster Standby Failover Virtualisierung Ausfallrechenzentrum zurück zur 1. Seite

www.sigma-chemnitz.de zurück zur 1. Seite

Danke für Ihre Aufmerksamkeit Haben Sie Fragen? Kontakte: SIGMA Chemnitz GmbH SIGMA Software und Consulting GmbH Am Erlenwald 13 Mollenbachstr. 25 09128 Chemnitz 71229 Leonberg Tel.: 0371/ 2371-0 Tel.: 07152/ 335393-0 http://www.sigma-chemnitz.de http://www.sigmagmbh.de zurück zur 1. Seite