Farbe Referent: Daniel Heep Dozent: Dr. Alexander Schütz

Slides:



Advertisements
Ähnliche Präsentationen
Developing your Business to Success We are looking for business partners. Enterprise Content Management with OS|ECM Version 6.
Advertisements

Bildverarbeitung in der Netzhaut
Vorlesung: 1 Betriebliche Informationssysteme 2003 Prof. Dr. G. Hellberg Studiengang Informatik FHDW Vorlesung: Betriebliche Informationssysteme Teil3.
Telefonnummer.
CPCP Institute of Clinical Pharmacology AGAH Annual Meeting, 29. Februar 2004, Berlin, Praktischer Umgang mit den Genehmigungsanträgen gemäß 12. AMG Novelle.
Modelle und Methoden der Linearen und Nichtlinearen Optimierung (Ausgewählte Methoden und Fallstudien) U N I V E R S I T Ä T H A M B U R G November 2011.
Modelle und Methoden der Linearen und Nichtlinearen Optimierung (Ausgewählte Methoden und Fallstudien) U N I V E R S I T Ä T H A M B U R G November 2011.
Workshop zur Medienarbeit der katholischen Kirche Aspekte des Religionsmonitors Berlin, 02. April 2008.
1 JIM-Studie 2010 Jugend, Information, (Multi-)Media Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
= = = = 47 = 47 = 48 = =
-17 Konjunkturerwartung Europa September 2013 Indikator > +20 Indikator 0 a +20 Indikator 0 a -20 Indikator < -20 Europäische Union gesamt: +6 Indikator.
Scratch Der Einstieg in das Programmieren. Scatch: Entwicklungsumgebung Prof. Dr. Haftendorn, Leuphana Universität Lüneburg,
Texturwahrnehmung von Bela Julesz
Colour Mechanisms of the Eye
Die Gene für das Farbensehen
Autoren: Favreau & Corballis (1976) Seminar: Visuelle Wahrnehmung
Neurobiologische Grundlagen der visuellen Wahrnehmung
Neuronale Grundlagen der Gestaltwahrnehmung
Apparent motion illusion
Form Analysis in Visual Cortex Rüdiger von der Heydt
Vorlesung: 1 Betriebliche Informationssysteme 2003 Prof. Dr. G. Hellberg Studiengang Informatik FHDW Vorlesung: Betriebliche Informationssysteme Teil2.
PKJ 2005/1 Stefan Dissmann Zusammenfassung Bisher im Kurs erarbeitete Konzepte(1): Umgang mit einfachen Datentypen Umgang mit Feldern Umgang mit Referenzen.
Betreuerin: Kathleen Jerchel
AC Analyse.
Studienverlauf im Ausländerstudium
Schieferdeckarten Dach.ppt
Physik in elementaren Portionen, Karlsruhe,
Heute: Scherenzange zeichnen
Reflexhafte Aufmerksamkeit verändert die Verarbeitung von visuellen Reizen im menschlichen visuellen Kortex von Joseph B. Hopfinger und George R. Mangun.
Rechneraufbau & Rechnerstrukturen, Folie 12.1 © W. Oberschelp, G. Vossen W. Oberschelp G. Vossen Kapitel 12.
20:00.
Die Geschichte von Rudi
Aufbau Stäbchen & Zapfen Farbblindheit & Farbfehlsichtigkeit
Dokumentation der Umfrage
Das visuelle System Das Sehen von Kanten:
für Weihnachten oder als Tischdekoration für das ganze Jahr
Biologische Psychologie I
Syntaxanalyse Bottom-Up und LR(0)
Der Test fängt mit dem nächsten Bild an!
NEU! 1 2. Wo kommt diese Art von Rezeptor im Körper vor?
1. Welcher Nerv innerviert diesen Muskel? NEU!
Der Test fängt mit dem nächsten Bild an!
Analyse von Ablaufdiagrammen
PROCAM Score Alter (Jahre)
Vorlesung Mai 2000 Konstruktion des Voronoi-Diagramms II
Das ist die Geschichte eines kleinen Jungen aus der Schweiz.
Symmetrische Blockchiffren DES – der Data Encryption Standard
Großer Altersunterschied bei Paaren fällt nicht auf!
Zahlentheorie und Zahlenspiele Hartmut Menzer, Ingo Althöfer ISBN: © 2014 Oldenbourg Wissenschaftsverlag GmbH Abbildungsübersicht / List.
MINDREADER Ein magisch - interaktives Erlebnis mit ENZO PAOLO
1 (C)2006, Hermann Knoll, HTW Chur, FHO Quadratische Reste Definitionen: Quadratischer Rest Quadratwurzel Anwendungen.
Analyseprodukte numerischer Modelle Tidekennwertanalysen des Schwebstofftransportes.
Pigmentierte Läsionen der Haut
Schutzvermerk nach DIN 34 beachten 20/05/14 Seite 1 Grundlagen XSoft Lösung :Logische Grundschaltung IEC-Grundlagen und logische Verknüpfungen.
Vortrag von Rechtsanwältin Verena Nedden, Fachanwältin für Steuerrecht zur Veranstaltung Wege zum bedingungslosen Grundeinkommen der Piratenpartei Rhein-Hessen.
Übersicht Täuschung des Tages kurze Wiederholung
1 Mathematical Programming Nichtlineare Programmierung.
Naturschutz -Tagung Lehrteam Naturschutz Region Bayerwald Tegernheimer Schlucht/Keilberg Blick vom Fellinger Berg ins Donautal.
Ertragsteuern, 5. Auflage Christiana Djanani, Gernot Brähler, Christian Lösel, Andreas Krenzin © UVK Verlagsgesellschaft mbH, Konstanz und München 2012.
Sport4final.de. sport4final.de Leben in der Gemeinde Apostelgeschichte 4, Der Grund (Vers 32a) 2. Die Auswirkungen (Verse 32b-33) 3. Die Gemeinschaft.
Bildergalerie PRESEASON CAMP Juni 2014 Romanshorn Get ready for the Season!
Es war einmal ein Haus
J-Team: Gymnasium Ulricianum Aurich und MTV Aurich Ein Projekt im Rahmen von UlricianumBewegt.de Euro haben wir schon…  8000 mal habt ihr bereits.
Negative Nacheffekte in der visuellen Wahrnehmung
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Wie.
1 Medienpädagogischer Forschungsverbund Südwest KIM-Studie 2014 Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
Monatsbericht Ausgleichsenergiemarkt Gas – Oktober
Monatsbericht Ausgleichsenergiemarkt Gas – November
Prinzipien der Bildverarbeitung in der Retina der Säugetiere
Klassische rezeptive Felder im Sehsystem höherer Säuger
 Präsentation transkript:

Farbe Referent: Daniel Heep Dozent: Dr. Alexander Schütz Seminar: Visuelle Wahrnehmumg Semester: SoSe 2009 26.05.2009

Gliederung Einleitung Grundlagen des Farbsehens 1.1 Die drei Zapfensyteme 1.2 Die Photorezeptoren 1.3 Grenzen des Farbsehens 2. Eigenschaften des Farbsehens 2.1.Farbantagonismus (color opponency) 26.05.2009 Farbe

Gliederung 2.2 Farbsimultankontrast (simultaneous color contrast) 2.3 Farbkonstanz 3. Mechanismen des Farbsehens 3.1 Konzentrische Breitbandzellen (concrentic broadband cells) 3.2 Einfache Gegenfarbenzellen 3.3 Typ M und Typ P Zellen 26.05.2009 Farbe

Gliederung 3.4 Doppelte Geganfarbenzellen 3.5 Das corticale Areal V4 3.6 Farbenblindheit 4. Die Bedeutung des Farbsehens 4.1 Farbe in “ low-level vision“ 4.2 Farbe in “ high-level vision“ 4.3 Bedeutung von Farbe bei Objekten und Szenen 26.05.2009 Farbe

Gliederung 4.4 Wissen und Wahrnehmung im Gehirn 4.5 Neuropsychologie des Farbwissens 4.6 Das ‘‘Shape+ Surface“ Modell 26.05.2009 Farbe

Einleitung Farbe und ihre Besonderheiten: Eigenschaft von Objekten Farbe wird auch unter verschiedenen Bedingungen gleich wahrgenommen  Farbkonstanz das Sehen von Farbe beruht auf einem Abstraktionsprozess, der ein Objekt in Relation zu seinem Hintergrund analysiert 26.05.2009 Farbe

1. Grundlagen des Farbsehens Wellenlängen von 400 bis 700 nm können vom menschlichen Auge wahrgenommen werden Anteile der drei Primärfarben Blau, Rot und Grün werden mit der Farbe einer beliebigen spektralen Zusammensetzung von Licht kombiniert  Trichromatizität 26.05.2009 Farbe

1.1 Die drei Zapfensyteme drei Typen lichtabsorbierender Zapfen mit jeweils eigenen Sehfarbstoffen bilden die Grundlage der Trichromatizität Bestätigung durch Messungen der Absorptionsspektren der Sehfarbstoffe in den Zapfen der menschlichen Retina 26.05.2009 Farbe

1.1 Die drei Zapfensyteme 26.05.2009 Farbe

1.1 Die drei Zapfensyteme 26.05.2009 Farbe

1.1 Die drei Zapfensyteme Pigment B: Reaktion auf kurze Wellenlängen des sichtbaren Farbspektrums, zur Wahrnehmung von Blau wichtig (max. 419 nm) Pigment G: Reaktion auf mittlere Wellenlängen,zur Wahrnehmung von Grün wichtig (max. 531 nm) Pigment R: Reaktion auf längere Wellenlängen, zur Wahrnehmung von Rot wichtig (max. 559 nm) 26.05.2009 Farbe

1.2 Die Photorezeptoren Absorption eines Photons führt unabhängig von der Wellenlänge immer zur derselben elektrischen Antwort die Wellenlänge bestimmt darüber, ob ein Photon absorbiert wird ein aktiver Zapfen allein reicht noch nicht zum Farbsehen aus zwei Photorezeptoren mit unterschiedlicher spektraler Empfindlichkeit sind notwendig 26.05.2009 Farbe

1.3 Grenzen des Farbsehens das Zapfensystem versagt bei Objekten mit dicht nebeneinanderliegenden Farben auf der Oberfläche Erregung benachbarter Zapfen durch Licht unterschiedlicher Teile des Objekts das Sehen in der Fovea centralis (Stelle des schärfsten Sehens) ist dichromatisch  B- Zellen fehlen, da bei fokussiertem langwelligen Licht, das kurzwellige Licht vor die Retina gebrochen wird (chromatische Aberation) 26.05.2009 Farbe

2. Eigenschaften des Farbensehens Trichromatizität kann eine Vielzahl von Phänomenen erklären, greift jedoch nicht ausreichend bei Funktionen, wie Farbantagonismus, Farbsimultankontrast und Farbkonstanz 26.05.2009 Farbe

2.1 Farbantagonismus (color opponency) umfasst den Aspekt, dass bestimmte Farben nicht in Kombination gesehen werden können, z. B. rötliches Grün Mischungen sind möglich, z. B. Rot und Grün zu reinem Gelb 26.05.2009 Farbe

2.1 Farbantagonismus (color opponency) Herings Gegenfarbentheorie: sechs primäre Farbqualitäten, welche in drei wechselseitig antagonistischen Paaren verarbeitet werden: Rot-Grün, Schwarz- Weiß, Gelb- Blau drei Gegenfarben werden in drei Paaren farbantagonistischer neuraler Kanäle analysiert, ein Kanal wird durch eine Farbe erregt und durch eine andere gehemmt bei Ausbalancierung: keine Reaktion 26.05.2009 Farbe

2.2 Farbsimultankontrast (simultaneous color contrast) relevant bei Gegenfarben, die von räumlich benachbarten Stellen ausgehen, so heben sich rote Objekte am deutlichsten von einem grünen Hintergrund ab Zapfenmechanismen scheinen sich genseitig zu verstärken 26.05.2009 Farbe

2.2 Farbsimultankontrast (simultaneous color contrast) 26.05.2009 Farbe

2.3 Farbkonstanz wichtigstes Phänomen: Farbe bleibt trotz Schwankungen in der Spektralverteilung der Umgebungsbeleuchtung konstant 26.05.2009 Farbe

3. Mechanismen des Farbensehens Informationen über Farbe und Helligkeit wird in der Retina und dem Corpus geniculatum laterale in getrennten Bahnen verarbeitet bei den retinalen Ganglienzellen und den Zellen des Corpus geniculatum laterale werden in zwei Hauptfunktionsklassen unterschieden: 1) konzentrische Breitbandzellen und 2) Gegnfarbenzellen 26.05.2009 Farbe

3.1 Konzentrische Breitbandzellen (concrentic broadband cells) leiten Informationen über Helligkeit weiter besitzen rezeptive Felder mit einer Zentrum-Umfeld-Organisation Erregung oder Hemmung durch weißes Licht, das auf das Zentrum des rezeptiven Feldes fällt Licht, mit dem das Umfeld bestrahlt wird, löst eine entgegengesetzte Reaktion aus 26.05.2009 Farbe

3.1 Konzentrische Breitbandzellen (concrentic broadband cells) aufgrund dieser antagonistischen Reaktionen werden diese Zellen auch als On- bzw. Off-Zentrum-Neuronen bezeichnet reagieren schlecht auf diffuses Licht enthalten Signale von G- und R- Zapfen, die im Umfeld und im Zentrum unabhängig voneinander aufsummiert werden Reaktion auf einen Helligkeitskontrast innerhalb ihres rezeptiven Feldes, jedoch keine Bedeutung bei der Farbwahrnehmung 26.05.2009 Farbe

3.2 Einfache Gegenfarbenzellen Eingangssignale der R- und G-Zapfen werden in den meisten Gegenfarbenzellen antagonistisch verarbeitet ( sowohl in der Retina als auch im Corpus geniculatum laterale) das Zentrum erhält Signale von einem Zapfentyp, während das antagonistische Umfeld Signale vom anderen Zapfentyp empfängt 26.05.2009 Farbe

3.2 Einfache Gegenfarbenzellen solche konzentrisch einfachen Gegenfarbenzellen reagieren stark auf großflächige, monochromatische Beleuchtung in einer bestimmten Wellenlänge 26.05.2009 Farbe

3.2 Einfache Gegenfarbenzellen R- Zentrum und G- Umfeld Organisation reagiert am stärksten auf rotes Licht G-Zentrum und R- Umfeld reagiert am stärksten auf grünes Licht Reaktion auf weißes Licht wie bei Breitbandzellen 26.05.2009 Farbe

3.2 Einfache Gegenfarbenzellen übertragen die Informationen von B-Zapfen die rezeptiven Felder besitzen keine getrennten Bereiche für Erregung und Hemmung: Eingangssignale von B-Zapfen stehen den kombinierten Eingangssignalen von R- und G-Zapfen im gesamten rezeptivem Feld gegnüber 26.05.2009 Farbe

3.3 Typ M und Typ P Zellen Axone, die in einer mangozellulären(Typ M) Schicht des oder in einer parvozellulären (Typ P) Schicht des Corpus geniculatum laterale enden Breitbandzellen können entweder vom Typ M oder P sein, während Gegenfarbzellen immer den Typ P aufweisen 26.05.2009 Farbe

3.4 Doppelte Gegenfarbenzellen erhalten Signale von einfachen Gegenfarbenzellen enthalten rezeptive Felder mit antagonistischer Zentrum - Umfeld- Struktur Eingangssignale von verschiedenen Zapfentypen werden in ihren rezeptiven Feldern jedoch nicht getrennt verarbeitet Anteil der jeweiligen Signale variiert mit dem jeweiligen Zapfentyp 26.05.2009 Farbe

3.4 Doppelte Geganfarbenzellen Beispiel: Signale von R-Zapfen führen in einigen Zellen zu einer exzitatorischen Reaktion im Zenrum und zu einer inhibitorischen im Umfeld Signale von G-Zapfen: umgekehrte Reaktion stärkste Reaktion: Beleuchtung des rezeptiven Feldes mit einem roten Lichtpunkt vor einem grünen Hinetrgrund 26.05.2009 Farbe

3.4 Doppelte Geganfarbenzellen drei weitere Klassen werden unterschieden: stärkste Reaktion bei grünem Licht und rotem Hintergrund stärkste Reaktion bei blauem Licht vor gelbem Hintergrund und umgekehrt höchste Dichte in den Blob- Regionen der Area IV 26.05.2009 Farbe

3.5 Das corticale Areal V4 V4 enthält ein neurales Substrat für das psychophysische Phänomen der Farbkonstanz enthält auch viele Neuronen, deren Reaktionen mit der Farberscheinung des betrachteten Objekts und nicht mit der Wellenlänge des reflektierten Lichts korreliert  Reaktion auf Farbe und nicht auf Wellenlänge 26.05.2009 Farbe

3.5 Das corticale Areal V4 die Zellen extrahieren Informationen über die Farbe von Objekten aus der Wellenlängeninformation Retinex- Methode ermöglicht es, anhand der Rezeptorantworten der drei Zapfentypen die wahrgenommene Farbe vorherzusagen Retinex- Methode verläuft in drei Schritten: 1) Messung der Helligkeit eines Objekts für jeden Zapfentyp, 2) Normierung am Wert des hellsten Objekts, 3) Zuweisung von Zahlen 26.05.2009 Farbe

3.6 Farbenblindheit bestimmte Formen der Blindheit gehen auf corticale Läsionen zurück Rot- Grün- Blindheit ist durch eine Mutation des X- Chromosoms verursacht, was defekte rote und grüne Zapfenpigmente bedingt andere Mutationen (z.B. für das blaue Pigment) sind eher selten 26.05.2009 Farbe

4. Die Bedeutung des Farbensehens die farbliche Wahrnehmung ist beteiligt an der Wiedererkennung eines Objekts nur Primaten haben drei Zapfensysteme und können trichromatisch sehen 26.05.2009 Farbe

4.1 Farbe in “ low-level vision“ entscheidende Vorteile bei der Nahrungssuche, bedingt durch trichromatisches Sehen Farbe hilft dabei Objekte und Szenen dreidimensional zu sehen und voneinander zu unterscheiden 26.05.2009 Farbe

4.2 Farbe in “ high-level vision“ gewisse Ansätze behaupten, dass Objekte nur aufgrund ihrer Form erkannt werden können andere Sichtweisen gehen weiter und sehen auch Eigenschaften, wie Farbe und Beschaffenheit als fundamental zur Erkennung eines Objekts dar 26.05.2009 Farbe

4.2 Farbe in “ high-level vision“ Studien belegen eher Theorien, die auch die Farbe und die Struktur berücksichtigen so werden Objekte, die in ihrer wirklichen Farbe präsentiert wurden, schneller identifiziert als solche, die in einer anderen Farbe präsentiert wurden 26.05.2009 Farbe

4.3 Bedeutung von Farbe bei Objekten und Szenen Farbe kann zur Identifizierung von Objekten dienen: „Rot“ als bedeutsamer Indikator für Feuer oder „Gelb“ als Indikator für Zitronen Farbe ist bei Objekten, wie Autos oder Werkzeugen von sekundärer Bedeutung die An- oder Abwesenheit von Farbe ist nur bei bestimmten Objekten bedeutsam 26.05.2009 Farbe

4.3 Bedeutung von Farbe bei Objekten und Szenen auch zur Identifizierung von Alltagsgeschehnissen spielt Farbe eine wichtige Rolle Bilder mit charakteristischen Farben werden am besten in ihrer Originalfarbe erkannt der Nutzen liegt dabei in der Möglichkeit, Dinge, die in ihrer Form leicht verändert sind, trotzdem schnell wiederzuerkennen 26.05.2009 Farbe

4.4 Wissen und Wahrnehmung im Gehirn das Wissen um die Farbe eines Objekts führt zu einer Assoziation zwischen Farbe und Objekt verschiedene neuronale Regionen sind bei der Wiedererkennung und bei dem Abruf von Wissen beteiligt wenn anhand eines Farbhinweises das jeweilige Objekt wiedererkannt werden sollte, ist der linke innere Temporallappen aktiv gleiche Gehirnstrukturen sind bei der Erkennung von Objekten beteiligt 26.05.2009 Farbe

4.4 Wissen und Wahrnehmung im Gehirn der linke Temporallappen ist sowohl bei der Zuordnung (z.B. die Farbe Gelb einem Bulldozer zuordnen oder einen gleben Bulldozer als „Gelb“ wahrnehmen) als auch bei der Wahrnehmung aktiv weitere Regionen: Gyrie des Hippocampus und Parahippocampus 26.05.2009 Farbe

4.4 Wissen und Wahrnehmung im Gehirn wichtig: Die Wiedererkennung einer Farbe eines Objekts aktiviert gleiche neuronale Regionen, wie bei der Erkennung von Objekten Die Regionen unterscheiden sich, je nachdem, ob Dinge durch die Farbe erkannt werden sollen oder ob die Farbe selbst erkannt werden soll 26.05.2009 Farbe

4.4 Wissen und Wahrnehmung im Gehirn Objekte, die in einer anderen Farbe als ihrer natürlichen präsentiert wurden aktivierten den dorsolateralen Präfrontalencortex 26.05.2009 Farbe

4.5 Neuropsychologie des Farbwissens Nicht alle Verletzungen im Gehirn beeinträchtigen das Vermögen zwischen echten und unechten Formen von Objekten zu unterscheiden jedoch ist bei spezifischen Verletzungen die zuverlässige Diskrimination zwischen passender und unpassender Farbe für ein Objekt nicht mehr gegeben andere Untersuchungen zeigten, dass Farben durchaus benannt, jedoch nicht den passenden Objekten zugeordnet werden konnten 26.05.2009 Farbe

4.5 Neuropsychologie des Farbwissens weitere Studien belegten, dass ein Unterschied zwischen visuellem und verbalem Farbwissen besteht Patienten mit Läsionen können durchaus über ein verbales Wissen verfügen, während das visuelle Wissen beeinträchtigt ist andere Patienten wiesen Schwierigkeiten auf, verbales und visuelles Wissen Farbe von Objekten miteinander zu verbinden 26.05.2009 Farbe

4.6 Das ‘‘Sahpe+ Surface“ Modell 26.05.2009 Farbe

4.6 Das ‘‘Shape+ Surface“ Modell das Modell stellt das Erkennen von Objekten als ein Erkennen von Gestaltsmerkmalen dar die Farbe hat eine unterstützende Funktion bei der Erkennung es zeigt eine Verbindung zwischen der visuellen und der mentalen Wahrnehmung von Farben auf es ist möglich, zu wissen, dass Äpfel rot sind, ohne eine visuelle Vorstellung davon zu haben 26.05.2009 Farbe

Vielen Dank für die Aufmerksamkeit ! 26.05.2009 Farbe

Klausurfragen Erläutern Sie den Begriff der Trichromatizität und differenzieren Sie die, diesem Begriff zugrundeliegenden, Zapfensysteme. Stellen Sie die wesentlichsten Aspekte von Herings Gegenfarbentheorie dar und erklären Sie anschließend kurz den Unterschied zwischen Farbantagonismus, Farbsimultankontrast und Farbkonstanz. 26.05.2009 Farbe

Klausurfragen 3. Ist die folgende These zu vertreten? „Die Farbe dient lediglich der Ästhetik. Zur bloßen Objekterkennung sind die Form und die Kontur ausreichende Indizien.“ 4. Erklären Sie, wie sich Verletzungen im Gehirn auf die Erkennung von Farben und Objekten auswirken kann. 26.05.2009 Farbe