Struktur-Funktions-Modelle von Pflanzen

Slides:



Advertisements
Ähnliche Präsentationen
ALP II: Objektorientierte Programmierung Sommersemester 2006
Advertisements

der Universität Oldenburg
Forschungszentrum caesar
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Indirekte Adressierung
FH-Hof Indirekte Adressierung Richard Göbel. FH-Hof Einfache Speicherung von Daten Eine "einfache" Deklaration definiert direkt eine Speicherplatz für.
Java: Grundlagen der Sprache
Java-Kurs - 2. Übung Entwicklungsumgebung Struktur von Programmen
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Einführung in die Programmiersprache C 1
Java programmieren mit JavaKara
Javakurs FSS 2012 Lehrstuhl Stuckenschmidt
BMEVIEEA100 Grundlagen der Programmierung
Java-Kurs - 8. Übung Besprechung der Hausaufgabe.
A) Erklären Sie den Datentyp char. b) Erklären Sie den Datentyp Struct c) Erklären Sie die Wirkungsweise des Operators & bei Anwendung im Zusammenhang.
Java Syntaxdiagramme Buchstabe A B Z a z ... Ziffer
Übersicht Nachtrag zu Ausdrücken
Java-Kurs - 3. Übung Hausaufgabe Arrays For-Schleifen.
Java-Kurs - 4. Übung Hausaufgabe Weitere Kontrollstrukturen
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Diskrete Mathematik I Vorlesung 2 Arrays.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Java-Kurs Übung Besprechung der Hausaufgabe
Java-Kurs - 4. Übung Hausaufgabe Weitere Kontrollstrukturen
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Variablen und Datentypen
Java Programme nur ein bisschen objektorientiert.
1 Arrays und Schleifen Özgü & Tim. 2 Inhaltsverzeichnis Arrays Was ist ein Array? Bauanleitung Beispiel Matrix Fehler Schleifen Wofür Schleifen? While-Schleife.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Hello World! Javakurs 2013 Arne Kappen
Struktur-Funktions-Modelle von Pflanzen
Java-Kurs - 4. Übung weitere Kontrollstrukturen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Java-Kurs - 2. Übung primitive Datentypen, Konstanten
Unterschiedliche Kontrollstrukturen
SS 04 Christiane Rauh Christian Hellinger
Struktur-Funktions-Modelle von Pflanzen
Arrays in Java Ein Array ist eine Variable, die aus einer An-zahl von Elementen des gleichen Datentyps besteht, die aufeinanderfolgend im Speicher liegen.
1. Die rekursive Datenstruktur Liste 1.3 Rekursive Funktionen
Implementieren von Klassen
Felder in der Informatik
Schleifen Datenfelder (Arrays) Verzweigungen
 Präsentation transkript:

Struktur-Funktions-Modelle von Pflanzen - Sommersemester 2017 - Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik 6. Vorlesung: 18. 5. 2017 (5. VL war Physiologie-Vorlesung; s. StudIP)

letztes Mal: einfache Verzweigungsmuster, modelliert mit L-Systemen weitere L-System-Beispiele Hinweise zu den Messungen und zu den dtd-Dateien

als nächstes: Verwendung von imperativem Code in XL-Programmen Verwendung von Schleifen und Arrays bei Verzweigungs-Konstruktionen konditionale Regelanwendung (Beispiele) Einbau von Texturen in Pflanzenmodelle Anlegen eines Projekts in GroIMP

Verwendung von imperativem Code in XL-Programmen Befehle wie Zuweisungen von Werten zu Variablen, Additionen, Funktionsausführungen, Ausgabe (Druckbefehle) usw. werden mit der gleichen Schreibweise wie in der Programmiersprache Java angegeben und in geschweifte Klammern { ... } eingeschlossen. Beispiele: int i; // Deklaration einer ganzzahligen Variablen mit Namen i float a = 0.0; // Deklaration u. Initialisierung einer Gleitkomma-Var. int[] x = new int[20]; // Deklaration eines Arrays (Datenfeldes) // der Länge 20; Zugriff: x[0], ..., x[19] float[] y = { 0.1, 0.2, 0.7, -1.4 }; // Deklaration und Initialisierung eines Arrays i = 25; // Zuweisung

Verwendung von imperativem Code (Fortsetzung) i++; // i wird um 1 erhöht i--; // i wird um 1 vermindert i += 5; // i wird um 5 erhöht i -= 5; // i wird um 5 vermindert i *= 2; // i wird verdoppelt i /= 3; // i wird gedrittelt n = m % a; // n wird der Rest von m bei ganzzahl. Division durch a zugew. x = Math.sqrt(2); // x wird die Quadratwurzel aus 2 zugewiesen if (x != 0) { y = 1/x; } // bedingte Zuweisung von 1/x an y while (i <= 10) { i++; } // Schleife: solange i  10 ist, // wird i um 1 erhöht for (i = 0; i < 100; i++) { x[i] = 2*i; } // imperative // for-Schleife if (i == 0) { ... } // Test auf Gleichheit ( „=“ wäre Zuweisung!)

mathematische Konstanten: logische Operatoren: Datentypen: int ganze Zahlen float Gleitkommazahlen double Gleitkommazahlen, doppelte Präzision char Zeichen (characters) void leerer Typ (für Funktionen, die nichts zurückgeben) mathematische Konstanten: Math.PI  Math.E e logische Operatoren: && und || oder ! nicht

einfache Datentypen: int ganze Zahlen float Gleitkommazahlen double Gleitkommazahlen, doppelte Präzision char Zeichen (characters) void leerer Typ (für Funktionen, die nichts zurückgeben) genauer:

mathematische Konstanten: Math.PI  Math.E e logische Operatoren: && und || oder ! nicht

mathematische Funktionen: Math.abs Absolutbetrag Math.sqrt Quadratwurzel Math.acos Arcuscosinus Math.tan Tangens Math.asin Arcussinus Math.toDegrees Math.atan Arcustangens Math.toRadians Math.cos Cosinus Umrechung Gradmaß  Math.exp Exponentialfunktion ex Bogenmaß Math.log natürlicher Logarithmus Math.max Maximum zweier Zahlen Math.min Minimum zweier Zahlen Math.round Rundungsfunktion Math.sin Sinus

sm_progbsp01.rgg: schreibt die Zahlen von 1 bis 10 auf die GroIMP-Konsole protected void init() { int i; for (i=1; i<= 10; i++) println(i); println("Ende."); }

sm_progbsp02.rgg: schreibt ungerade Quadratzahlen protected void init() { int a, b; for (a = 1; a <= 10; a++) b = a*a; if (b % 2 != 0) println(b); } println("Ende.");

sm_progbsp03.rgg: schreibt die Fibonacci-Zahlen protected void init() { int i; int[] fibo = new int[20]; /* Array-Deklaration */ fibo[0] = fibo[1] = 1; for (i=2; i <= 19; i++) fibo[i] = fibo[i-1] + fibo[i-2]; for (i=0; i <= 19; i++) println(fibo[i]); println("Ende."); }

sm_progbsp04.rgg: Verwendung einer Funktion /* ein einfaches imperatives Programm: Eine selbstgeschriebene Funktion berechnet x2 + 1; diese wird für x von 0 bis 1 in 0.1-Schritten ausgewertet. Man achte auf Rundungsfehler und auf die richtige Obergrenze für x. */ public float funktion(float x) { return x*x + 1; } protected void init() float a = 0.0; /* Gleitkommazahl */ while (a <= 1.00001) println(funktion(a)); /* wende Funktion an und gib aus */ a += 0.1; /* inkrementiere a */ println("Ende.");

Schachtelung von regelbasiertem und imperativem Code in XL

Schachtelung von regelbasiertem und imperativem Code in XL

Beachten Sie die unterschiedliche Syntax von Kontrollstrukturen im imperativen und im regelbasierten Teil von XL: imperativ: { // ... for (int i = 1; i <= 42; i++) x[i] = 3*i + 1; } regelbasiert: [ A(x) ==> for (int i = 1; i <= 7; i++) ( RU(15) F(x) ); ] (ebenso bei if ( ... ) )

Beispiel für eine for-Schleife für Seitenzweige: sm09_b22.rgg protected void init() [ Axiom ==> F(10); ] public void seitenzweig() [ F(x) ==> F(x) L(x) for (int i=1; i<=5; i++) ( [ MRel(0.1*i+0.2) RU((-1**i)*30) F(x*0.2) ] ); ]

Beispiel für Verwendung von Arrays zur Steuerung von Längen und Winkeln: sm09_b20.rgg // ... const float[] laenge = { 1, 1, 0.5, 0.2}; const float[] winkel = {40, 50, 80 , 100 }; public void run1() [ a:A, (a[ordnung] < 4) ==> F(laenge[a[ordnung]]) [ RU( winkel[a[ordnung]]) RH(90) A(a[ordnung]+1) ] [ RU(-winkel[a[ordnung]]) RH(90) A(a[ordnung]+1) ]; ]

Erweiterung zum Beispiel sm09_b07 Erweiterung zum Beispiel sm09_b07.rgg (farbige Koch-Kurve) mit eingefügtem imperativen Code: sm09_b07a.rgg Weitergabe von Informationen (hier: Farbe) an Nachfolgeobjekte

Konditionale L-System-Regeln in XL linke_Regelseite, ( Bedingung ) ==> rechte_Regelseite Beispiele: sm09_b11.rgg Bedingungen für Regelanwendungen sm09_b12.rgg Bedingungen für Regelanwendungen (2. Variante) sm09_b13.rgg Verknüpfung zweier Bedingungen

Farben setzen in XL (Zusammenfassung)

Texturen Texturen sind 2-dimensionale Muster, die anstelle von Farben auf Oberflächen aufgetragen werden, um einen realistischeren Eindruck der Beschaffenheit von Objektoberflächen zu erhalten. Quellen für Texturen: Fotos, Scans von Objekten, Bilddatenbanken im Internet, künstlich erzeugte Muster...

Beispiel mit Baum-Foto als Textur für das Rechteck:

sm09_b10.gsz Verwendung einer Blatt-Textur zu beachten bei Anlegen des Projekts: Editor-Datei nach der Auswahl der Bilddatei neu speichern / kompilieren - texturierte Objekte werden nun mit Textur dargestellt Speichern des gesamten Projekts: File  Save, Namen des Projekts eingeben (muss nicht mit Namen der RGG-Programmdatei übereinstimmen). Bilddatei wird mit- gespeichert. Projektdatei hat Namensendung .gsz (lesbar mit Datenkompressionsprogrammen wie z.B. WinZIP) Beispiel: sm09_b10.gsz Verwendung einer Blatt-Textur

Hausaufgabe zum nächsten Mal: Bearbeiten Sie im ILIAS-Lernmodul „Einführung in GroIMP“ (verfügbar über StudIP) die Lektionen 5 – 12.