Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Business Intelligence Vorstellung der Ergebnisse des Business Intelligence Projekts Master Digitale Logistik und Management Präsentiert von: Maxim Beifert,

Ähnliche Präsentationen


Präsentation zum Thema: "Business Intelligence Vorstellung der Ergebnisse des Business Intelligence Projekts Master Digitale Logistik und Management Präsentiert von: Maxim Beifert,"—  Präsentation transkript:

1 Business Intelligence Vorstellung der Ergebnisse des Business Intelligence Projekts Master Digitale Logistik und Management Präsentiert von: Maxim Beifert, Mohamed Oukettou

2 Gliederung Ist-Situation und Datenvorbereitung Datensäberung Datenreduktion Data Mining Verfahren Naive Bayes Clustering mit K-Means J48/ ID3 Schlussfolgerung

3 Ist-Situation und Datenvorbereitung Ist-Situation: Insgesamt 54 und 234 Datensätze. Verschiedene Themen (Finanzen, Wohnsituation, Studium, Freizeit, Verkehrsmittel, Zufriedenheit). Datenvorbereitung Datensäuberung: fehlende Daten manuell einfügen. inkonsistente Daten Betriebswirtschaft- Bachelor BW Wirtschaftsinformatik- Bachelor WI

4 Datenvorbereitung Datenreduktion (Ausgangspunkt 54*234= 12636) auf 34 Spalten und Datensätze von 234 auf 229 (34*229= 7786) Ausblenden von Attributen: z.B wie bewegst dich in Wismar (Anderes und Motorad) fast 100% benutzen kein Motorad sowie keinen anderen Verkehrsmittel Entfernen von Datensätze Zusammenfassen von Attributen: –In welchen Wohnverhältnissen lebst du (Eigentumswohnung- Mietwohnung- Wohngemeinschaft- Studentenwohnheim- Eltern) –wie kommst Du zur Hochschule (Bahn, Bus, Auto, Fahrrad, ZuFuß) –Wie bewegst Du Dich in Wismar (Bus- Auto- Fahrrad- Zu Fuß)

5 Datenvorbereitung FinanzenWohnsituationStudiumFreizeitVerkehrsmittelZufriedenheit -Bafög - finanzielle Unterstützung - Arbeit - Budget -Wohnverhältnis - Fläche -Studiengang - Semester - Erstsudium - Grund für S in Wismar -Leistung im S -Fernseher - Fernseh (Std) - Onlinespiele - (Std) -Sport -WE in Wismar -Ankunft nach Wismar - Bewegung in Wismar -Zufriedenheit mit der Lebens- situation - Zufriedenheit mit der S Leistung Ziel: Zufriedenheit mit der aktuellen Lebenssituation als Student in Wismar vorhersagen

6 Data Mining Verfahren Naive Bayes: Am Anfang wählen wir alle Kategorien Und erzielen wir die Ergebnisse:

7 Data Mining Verfahren In einer anderen Vorgehensweise nehmen wir die Kategorien im einzelnen Die Tabelle zeigt die erzielten Ergebnisse ThemenAccuracy % ; Anzahl von Daten Error % ; Anzahl von Daten Finanzen45,6 ; 2154,3 ; 25 Studium41,3 ; 1958,6 ; 27 Wohnsituation52,1 ; 2447,8 ; 22 Freizeit45,6 ; 2154,3 ; 25 Zufriedenheit52,1 ; 2447,8 ; 22 Verkehrsmittel58,6 ; 2741,3 ; 19

8 Data Mining Verfahren Clustering K-Means K= 5 k= 4

9 Data Mining Verfahren Clustering K-Means

10 Data Mining Verfahren Entscheidungsbaum mit J48 und ID3 J48

11 Data Mining Verfahren J 48 ThemenAccuracy % ; Anzahl von Daten Error % ; Anzahl von Daten Finanzen47,8 ; 2252,17; 24 Studium30,4; 1469,5%; 32 Wohnsituation47,8; 2252,1; 24 Freizeit54,3; 2545,6; 21 Zufriedenheit47,8; 2252,1; 24 Verkehrsmittel43,4; 2056,5; 26

12 Data Mining Verfahren ID3 Im allgemein das Verfahren von ID 3 Algorithmus sieht aus wie J48

13 Schlussfolgerung Umsetzung die Theorie in der Praxis Verwendung von verschiedenen Verfahren des Data Mining mit dem Naive Bayes Verfahren erzielt man die besten Ergebnisse J48 und ID3 sind Verfahren zur Generierung von Entscheidungsbäume und liefern fast die gleiche Egebnisse


Herunterladen ppt "Business Intelligence Vorstellung der Ergebnisse des Business Intelligence Projekts Master Digitale Logistik und Management Präsentiert von: Maxim Beifert,"

Ähnliche Präsentationen


Google-Anzeigen