Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Routenplanung & Komplexität. Lernziele Sie haben den Dijkstra-Algorithmus nachvollzogen. Sie haben das Konzept der Komplexität eines Algorithmus verstanden.

Kopien: 1
Routenplanung & Komplexität. Lernziele Sie haben den Dijkstra-Algorithmus nachvollzogen. Sie haben das Konzept der Komplexität eines Algorithmus verstanden.

Ähnliche Präsentationen


Präsentation zum Thema: "Routenplanung & Komplexität. Lernziele Sie haben den Dijkstra-Algorithmus nachvollzogen. Sie haben das Konzept der Komplexität eines Algorithmus verstanden."—  Präsentation transkript:

1 Routenplanung & Komplexität

2 Lernziele Sie haben den Dijkstra-Algorithmus nachvollzogen. Sie haben das Konzept der Komplexität eines Algorithmus verstanden. Sie haben die Komplexität des Dijkstra- Algorithmus abgeschätzt. Sie können auch für andere Probleme die Komplexität (in O-Notation) abschätzen

3 Routenplanung Es geht darum, anhand einer Strassenkarte den kürzesten Weg zwischen zwei Orten zu finden Edsger Dijkstra Edsger Dijkstra fand schon 1956 eine effiziente Lösung für dieses Problem, die auch heute noch in den meisten Navigationsgeräten Anwendung findet

4 Was ist ein Algorithmus?

5 Schritt 1: Abstraktion (= Reduzierung des Problems auf das Wesentliche)

6 Man kann noch weiter Abstrahieren Ziel: möglichst wenige, gleichförmige Elemente

7

8 Schritt 2: Lösung?! Es gibt eine sehr simple, aber nicht besonders schlaue Lösung für das Problem mit dem kürzesten Weg: Brute Force Diese Methode funktioniert übrigens bei vielen Problemen, und wird doch fast nie angewandt – später sehen wir, warum

9 Es gibt bessere Lösungen... aber wie? Idee???

10 Schritt 2: Grundidee Ameisen bewegen sich mit konstanter Geschwindigkeit entlang des Graphen und markieren dabei ihren Weg Ausgehend vom Startort Aufspaltung an jeder Kreuzung Bereits markierte Wege werden verworfen Wer zuerst den Zielort erreicht hat den kürzesten Weg gefunden

11

12 Dijkstras Algorithmus... ist eine Variante der Ameisenidee Warum Variante? – weil Computer seriell arbeiten – weil man noch ein kleines bisschen optimieren kann Wie genau es funktioniert? – routeplanner_3.pdf – mit Stift nachvollziehen

13

14

15

16

17 Ergebnis : allerdings mit einem Fehler!

18 Schritt 3: Formalisieren Beispielsweise als Flow Chart Pseudocode Struktogramm – s. Arbeitsblätter

19

20 Aufgabe Schauen Sie sich den Algorithmus nochmals an. Welche Werte müssen Sie sich von jedem Knoten aufschreiben, wenn Sie bei der Lösung des Algorithmus nicht auf die vorliegende Karte schreiben dürfen?

21 Aufgabe: 1.Bestimmen sie eines der Hotels (gelbe Knoten) als Startpunkt 2.Erstellen Sie eine Distanztabelle für die Strecken zu allen anderen Hotels (Lösungen für A, G & K im pdf)

22 Schritt 4: Analysieren Ist das ein guter Algorithmus? Ist er besser als ein Anderer? – Immer? – In speziellen Fällen? Lohnt es sich, ihn zu implementieren?

23 Komplexität & Big-O-Notation Das Problem des Handlungsreisenden (travelling salesman): Berechne die kürzeste Strecke, die durch mehrere vorgegebene Orte führt

24 Komplexitätsabschätzung Es geht um asymptotische Laufzeit (Speicherbedarf) Abschätzen, wie sich der Rechenaufwand eines Algorithmus im ungünstigsten Fall mit immer grösser werdenden Eingaben verändert Und wozu ist das nütze?

25 Laufzeitabschätzung Wir betrachten, wie viele Schritte im Algorithmus abgearbeitet werden müssen - abhängig von der Menge der Eingabedaten. Beispiel 1: Wir haben eine Namensliste und wollen wissen, ob ein bestimmter Name darin vorkommt. UND JETZT ? Kerim Alexandra Lorenz Julian Samuel Niruban Aymar Joël Slavko Manuel Nathanael Anselm Niko

26 Laufzeitabschätzung 1)Lösung (Algorithmus) finden 2)Für den ungünstigsten Fall (worst case) durchspielen 3)Laufzeit abschätzen (O-Notation) Kerim Alexandra Lorenz Julian Samuel Niruban Aymar Joël Slavko Manuel Nathanael Anselm Niko

27 Algorithmus Lineare Suche Worst case? Laufzeit – n = 10? – n = 20? – n = 100? – allgemein? O(n) (n verdoppeln verdoppelt Laufzeit)

28 Laufzeitabschätzung Wir betrachten, wie viele Schritte im Algorithmus abgearbeitet werden müssen - abhängig von der Menge der Eingabedaten. Beispiel 2: Wir haben eine Namensliste und wollen wissen, ob ein Name darin doppelt vorkommt. Kerim Alexandra Lorenz Julian Samuel Niruban Aymar Joël Slavko Manuel Nathanael Anselm Niko Allgemeine Laufzeit?

29 O-Notation Wir betrachten, wie sich die Schrittanzahl im Algorithmus für eine sehr grosse Anzahl von Eingabedaten verhält (obere Schranke für Worst Case). Beispiel Namensliste: Für n Eingabedaten brauchen wir sicher nicht mehr als (n-1)+(n-2)+…+(1) = Schritte. Schreibweise: Laufzeit_Namensliste = O( n 2 )

30 O-Notation Vereinfachungsregeln : Addition f(n) = n + 3 O(n) f(n) = n 2 + 3n O(n 2 ) Multiplikation f(n) = 3n O(n) f(n) = n 2 * 3n O(n 3 ) Konstante Summanden werden vernachlässigt Es zählt der Summand mit dem stärkeren Wachstum Konstante Faktoren werden vernachlässigt Es zählt die Summe der Exponenten

31 Aufgaben (s. ABKomplexität1.doc) 1.Wir wollen einen quadratischen Rasen mähen, die Länge einer Seite ist n. Zu welcher Komplexitätsklasse gehört das Rasenmähen? 2.Wir wollen eine n-stöckige Pyramide aus Getränke- Kisten bauen. Wie lautet die Laufzeit in O-Notation? 3.Sie haben das Bier für die Party schon gekauft, n ist die Anzahl der Gäste. Saufzeit in O-Notation?

32 Turm von Hanoi (original mit 64 Scheiben) Anzahl Züge: 3 Scheiben 7 Züge n Scheiben 2 n -1 Züge

33 Komplexitätsabschätzung Wie verhält sich die asymptotische Laufzeit für folgende Algorithmen? (wie ändert sich die Anzahl der Rechenschritte, wenn man die Anzahl der Elemente im Array verdoppelt) 1.Suchen eines Elements im Array 2.Sortieren der Elemente des Arrays 3.Alle möglichen Permutationen ausgeben

34 Komplexitätsabschätzung Es geht um asymptotische Laufzeit (Speicherbedarf) Abschätzen, wie sich der Rechenaufwand eines Algorithmus im ungünstigsten Fall mit immer grösser werdenden Eingaben verändert Theoretische Informatik

35 Berechenbarkeit von Algorithmen prinzipiell nicht berechenbar prinzipiell berechenbar, praktisch nicht praktisch berechenbar 2. Kann alles, was theoretisch berechenbar ist, auch tatsächlich berechnet werden? was heisst hier praktisch? Ein Computer ist eine universelle Rechenmaschine, er kann alles berechnen, was berechenbar ist. 1. Gibt es auch Probleme, die nicht berechenbar sind?

36 Komplexitätsklassen

37 noch praktikabel nicht mehr praktikabel

38 Berechenbarkeit von Algorithmen prinzipiell nicht berechenbar P Die nicht-polinomialen Algorithmen (NP): Sind praktisch nicht lösbar, für etwas grössere n. 1. Gibt es keine schnellere Lösung, oder haben wir nur noch keine gefunden? Und: Für die grosse Familie der NP-vollständigen Probleme muss diese Frage nur an einem einzige Beispiel beantwortet werden! NP-v NP-h NP?...

39 NP-vollständige Probleme Sie sind entscheidbar (=berechenbar). Sie besitzen Lösungen in exponentieller Zeit. Für keines dieser Problem wurde je ein Algorithmus mit Polynomialzeit gefunden. Niemand konnte bisher beweisen, ob sie exponentielle Zeit benötigen müssen. Alle diese Probleme sind miteinander verwandt: – Sollte jemals für ein einziges Problem ein Algorithmus mit Polynomialzeit gefunden werden, dann ergäben sich sofort Polynomialzeit-Algorithmen für alle anderen Probleme. – Umgekehrt gilt das allerdings auch (Beweis, dass NPP) nicht berechen bar NP P

40 P == NP ? Das P-NP-Problem gilt als eines der wichtigsten offenen Probleme der Informatik und wurde vom Clay Mathematics Institute in die Liste der Millennium-Probleme aufgenommen – auf seine Lösung ist eine Preis von 1 Million $ ausgesetzt.Millennium-Probleme Frage: Rein finanziell gesehen wäre man bescheuert, den Preis in Anspruch zu nehmen, falls man einen Beweis für die Vermutung P == NP gefunden hätte. Warum?

41 Verstanden? Formulieren Sie mit eigenen Worten: 1.Wie ist die Problemklasse P definiert? 2.Wie ist die Problemklasse NP definiert?

42 Verstehen sie den Witz jetzt besser? Das Problem des Handlungsreisenden (travelling salesman)

43 Komplexitätsabschätzung Es geht um asymptotische Laufzeit (Speicherbedarf) Abschätzen, wie sich der Rechenaufwand eines Algorithmus im ungünstigsten Fall mit immer grösser werdenden Eingaben verändert Und bei Dijkstra?

44 Vollständige Wege in Graphen Wege von S aus: 2 Wege (2 x 2 Schritte) Möglichkeiten bei noch mehr Knoten: 3 x 2 Wege (x 3) 4 x 6 Wege (x 4) 5 x 24 Wege (x 5) 6 x 102 Wege (x 6) (n-1)(n-1)! Schritte = O(n!) 3 Wege in den 3er-Graphenvon: 3 x 2 Wege (6 x 3 Schr.)

45 Dijkstra: keine doppelten Wege Alle Wege von S aus, danach ist S aus dem Rennen Im verkleinerten Graphen wird der näheste Knoten zu S und das Ganze von vorn... (n-1) + (n-2) + (n-3) n 2 /2 O(n 2 ) Bei nicht vollständig verknüpften Graphen und geschickter Implementierung: O(n x log(n))

46 Welche Komplexität hat Routenplanung... mit brute force? O(n!), also NP mit dem Dijkstra Algorithmus? O(n 2 ), also P genauer: O(n 2 /2), wenn der Graph nicht voll verbunden und der Algorithmus geschickter implementiert ist sogar nur O(n*log(n))

47

48 Binäre Suche; O(log(n))


Herunterladen ppt "Routenplanung & Komplexität. Lernziele Sie haben den Dijkstra-Algorithmus nachvollzogen. Sie haben das Konzept der Komplexität eines Algorithmus verstanden."

Ähnliche Präsentationen


Google-Anzeigen