Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Hauptseminar Automaten und Formale Sprachen Algorithmen der Bioinformatik Exact String Matching Michael Opfermann.

Ähnliche Präsentationen


Präsentation zum Thema: "Hauptseminar Automaten und Formale Sprachen Algorithmen der Bioinformatik Exact String Matching Michael Opfermann."—  Präsentation transkript:

1 Hauptseminar Automaten und Formale Sprachen Algorithmen der Bioinformatik Exact String Matching Michael Opfermann

2 Exact String Matching Problemstellung - Das Auffinden aller Vertreter eines Musters P innerhalb eines Textes T T :TGACGTACGAATG P : GTACG - Möglichst zeit- und speicherplatzeffizient

3 Definitionen String S – Sei ein Wort, oder eine Kette, aus Buchstaben des Alphabetes X Substring S[k..l] – Sei ein stetiger Teilausschnitt eines Strings S, beginnend an einer Position k und endend an der Position l Prefix – Sei ein Substring S[1..k] des Strings S Suffix – Sei ein Substring S[k..|S|] des Strings S Muster P – Das Muster sei der zu suchende String der Länge m Text T – Sei der nach Vorkommen des Musters zu durchsuchende String der Länge n

4 Naiver Algorithmus Buchstabenweiser Vergleich von Text und Muster Bei Fehler verschieben des Musters um 1 Position nach Rechts relative zum Text GTAGTCCTAG GTCCT _GTCCT Worst Case Laufzeit : O (m*n) Verbesserungen der Laufzeit durch Preprocessing zum Berechnen größerer Verschiebungen als im naiven Algorithmus – Entweder am Text oder am Muster

5 Preprocessing Preprocessing am Muster P – Right-most Position der Buchstaben des Musters Bezeichnet das Vorkommen am weitesten rechts eines Buchstabens im Muster Definition – Für jeden Buchstaben x im Alphabet, sei R(x) die right- most Position von x in P – R(x) = 0 wenn x nicht in P existiert GTAAGT :R(G) = 5R(T) = 6 R(C) = 0R(A) = 4

6 Preprocessing Preprocessing am Muster – Definitionen Z i (S) (einfach Z i, falls S fest bestimmt) – Gegeben sei ein String S und eine Position 1 < i <=|S| in diesem String. Dann sei Z i (S) die Länge des längsten Substrings in S, der in i beginnt und einen Prefix von S entspricht Z-Box – Für jede Position 1 0, sei die Z-Box das Intervall [i, i+ Z i (s) -1] r i – r i sei der right-most Endpunkt aller Z-Boxen, die links von oder an der Position i beginnen. l i – l i sei der am weitesten links liegende Startpunkt einer Z-Box, die in r i endet

7 Preprocessing am Muster Der Z Algorithmus (Teil 1) Zur Bestimmung der Z i (S) – r = 0, l = 0 – Für 1 < k <= |S| Wenn k > r dann Vergleiche die Substrings S[k…m] und S[1…m-k+1] miteinander, bis ein ungleiches Paar auftritt. Z k ist gleich der Länge der Übereinstimmung. Wenn Z k > 0, dann r = k + Z k -1 und l = k

8 Preprocessing am Muster Der Z Algorithmus (Teil 2) k <= r – k = k – l +1 – b = r – k + 1 – 1. Fall Z k (S) < b Z k = Z k – 2. Fall Z k (s) >= b Vergleiche Substrings von S startend an Positionen (b + 1) und (r + 1) miteinander bis ein Fehler auftritt (an Position q) Z k = q – k, r = q – 1, l = k

9 Preprocessing am Muster Der Z Algorithmus (Teil 3) – Ziel Berechnen von Z i (S) Werten durch benutzen der Z j (S) Werte für j < i Beispiel k = 121, r 120 = 130, l 120 = 100 – Z 22 (S) = 3 – Dann folgt, Z 121 (S) ist ebenfalls 3

10 Boyer Moore Algorithmus Bestandteile – Right-to-Left-Scan Eigentliche Vergleichsoperation – Bad Character Rule Aufruf bei Auftreten eines ungleichen Vergleichspaares zur Berechung der Verschiebung – Good Suffix Rule Aufruf bei Auftreten eines ungleichen Vergleichspaares, das nicht das erste Vergleichspaar ist, oder dem Auffinden eines Vorkommens des Musters im Text

11 Boyer Moore Algorithmus Right to Left Scan – Buchstabenweiser Vergleich wie im naiven Algorithmus – Allerdings nicht von Links nach Rechts, sondern von Rechts nach Links GTCGTAAATGTGA GTAATAA – Laufzeit unverändert zu Naiven Algorithmus – Verschieben des Musters anhand der beiden Verschieberegeln Bad Character Rule Good Suffix Rule

12 Boyer Moore Algorithmus Bad Character Rule – Sei x ein Buchstabe aus T und y ein Buchstabe aus P – Sei k die aktuelle Vergleichsposition in T und i die Position in P – Wenn ein Vergleich von x und y ergibt x <> y, dann verschiebe P um Max[1, i-R(T(k))] nach rechts GTCAGT…. GTCAGT….. GTACGTTC

13 Boyer Moore Algorithmus Laufzeiten und Speicherbedarf – g sei die Größe des Alphabets, m sei die Länge von P, n sei die Länge von T – Vorverarbeitung von P Speicherbedarf: O(g) = O(1) Laufzeit O(g*m) = O(m) – Anwenden der Bad Character Rule Right to Left Scan : O(m) Bestimmung der Verschiebeposition : O(g) – Worst Case Laufzeit : O(n*(g+m)) + O(m) = O(n*m) – Laufzeit bei großem Alphabet und kurzem P geht gegen O(n/m)

14 Boyer Moore Algorithmus Good Suffix Rule – Arbeitsweise Fall 1 Ein Substring t von T stimmt mit einem Suffix von P überein – Dann finde die right-most Kopie t von t in P, so dass t ist kein Suffix von P und das Zeichen links von t ist ungleich dem Zeichen links von t – Verschiebe P nach rechts, so dass t unter t liegt – Gibt es kein solches t dann suche einen Suffix von t, der mit einem Prefix von P übereinstimmt und verschiebe P, so das dieser Suffix über diesem Prefix liegt – Gibt es keinen solchen Suffix, dann verschiebe P um m Positionen nach rechts

15 Boyer Moore Algorithmus Good Suffix Rule – Arbeitsweise Fall 2 eine Kopie K von P wurde in T gefunden – Melde Position der Kopie – Suche einen echten Prefix t von P, so dass t = Suffix t von K – Verschiebe P nach rechts, so dass t genau über t liegt – Gibt es kein solches t dann verschiebe P um m Positionen nach rechts

16 Boyer Moore Algorithmus Good Suffix Rule – Vorverarbeitung von P Definitionen – Für jede Position i in P sei L(i) die am weitesten rechts liegende Position für die gilt P[i..n] entspricht einem Suffix von P[1..L(i)] und der Buchstabe vor diesem Suffix is ungleich P(i-1). L(i) = 0 wenn keine solche Position existiert – Für P sei Nj(P) die Länge des längsten Suffix des Substrings P[1..j], der zudem ein Suffix von P ist – P r sei Umkehrung von P

17 Good Suffix Rule Preprocessing Z i (s) ist die Länge des längsten Substrings von S, der in i beginnt und einen Prefix von S ist Offensichtlich ist N die Umkehrung von Z – D.h. N j (P) = Z n-j+1 (P r ) Da Z O(m) ist auch N O(m) L(i) = max(j | N j (P) = |P[i..n]| = (n-i+1))

18 Good Suffix Rule Preprocessing Z-Based Boyer Moore for i := 1to n do L(i) = 0 for j := 1 to n-1 do begin i := n – N j (P) + 1 L(i) := j end;

19 Good Suffix Rule Preprocessing Definition – l(i) sei gleich dem größten j <= |P[i..n]|, so das N j (P) = j Die Good Suffix Rule – Tritt beim Vergleich ein Fehler an Position i -1 auf und L(i) >0 dann verschiebe P um m - L(i) Positionen nach rechts – Ist L(i) = 0, dann verschiebe P um m – l(i) Positionen nach rechts – Wurde ein Vorkommen von P in T gefunden, dann verschiebe P um m – l(2) Positionen nach rechts

20 Boyer Moore Algorithmus Berechne L(i), l(i) und R(x) k:=n Solange k <=n – i:= n – h:= k – Solange i > 0 und P(i) = T(h) i:= i -1; h:= h-1 – If i = 0 Berichte gefundenes Vorkommen von P k:= k + n – l(2) – Else Verschiebe P um das Maximum der durch die Good Suffix bzw. Bad Character Rule berechnete Verschiebung

21 Knuth Morris Pratt Algorithmus Definitionen – sp i (P) sei die Länge des Längsten echten Suffix von P[1..i] der mit einem Prefix von P übereinstimmt und außerdem gilt P(i+1) <> P(sp i +1) Verschieberegel – Verglichen wird von links nach rechts wie im naiven Algorithmus – Tritt ein Fehler an der Position i+1 von P auf, so verschiebe P um i- sp i Positionen nach rechts – Wird ein Vorkommen von P in T gefunden, so verschiebe P um n – sp n Positionen nach rechts

22 Knuth Morris Pratt Algorithmus Vorteile der Verschieberegel – 1. oft Verschiebungen größer 1 – 2. nach einer Verschiebung stimmt der Prefix P[1..sp i ] mit T überein und der Vergleich braucht erst ab der Position P[sp i +1] fortgeführt zu werden

23 Knuth Morris Pratt Algorithmus Preprocessing – Z Based Knuth Morris Pratt Für i:= 1 bis n – sp i = 0 Für j:= n abwärts bis 2 – i:= j + Z j -1 – sp i := Z j Fehlerfunktion F(i) = sp i-1 +1 – (wobei sp 0 =0)

24 Knuth Morris Pratt Algorithmus Preprocessing F(k) c:= 1; p:= 1 Solang c+(m-p) <= n – Solange P(p) = T(c) und p<=m p++, c++ – Wenn p=n+1 dann Berichte Vorkommen von P in T startend an Position c-m – Wenn p=1 dann c++ – p:= F(p)

25 Knuth Morris Pratt Algorithmus Realtime Erweiterung – Z based real time matching Für i:= 1 bis n – Sp i,x = 0 für jedes x aus dem Alphabet Für j:= n abwärts bis 2 – i:= j + Z j -1 – x:= P(Z j +1) – Sp i,x := Z j


Herunterladen ppt "Hauptseminar Automaten und Formale Sprachen Algorithmen der Bioinformatik Exact String Matching Michael Opfermann."

Ähnliche Präsentationen


Google-Anzeigen