Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Rekursive Listenverarbeitung Prolog Grundkurs WS 99/00 Christof Rumpf

Ähnliche Präsentationen


Präsentation zum Thema: "Rekursive Listenverarbeitung Prolog Grundkurs WS 99/00 Christof Rumpf"—  Präsentation transkript:

1 Rekursive Listenverarbeitung Prolog Grundkurs WS 99/00 Christof Rumpf

2 GK Prolog - Rekursive Listenverarbeitung 2 Datenstrukturen Datenstrukturen sind mathematische Objekte wie –Mengen –Listen –Bäume –Gerichtete azyklische Graphen –...

3 GK Prolog - Rekursive Listenverarbeitung 3 Datenstruktur-Komponenten Eine abstrakte Datenstruktur besteht aus zwei Komponenten: –Einer Definition für die Repräsentation der Daten. –Einer Menge von Operationen, mit denen die Datenstruktur manipuliert werden kann.

4 GK Prolog - Rekursive Listenverarbeitung 4 Operationen auf Listen Für die Manipulation von Listen stehen uns in Prolog zwei Basisoperationen zur Verfügung: –Der Listenkonstruktor zur Zerlegung einer Liste in Kopf und Rest. –Unifikation. Zusammen mit rekursiven Prädikaten er- lauben diese Mittel komplexere Operationen.

5 GK Prolog - Rekursive Listenverarbeitung 5 Basisprädikate zur Listenmanipulation Vier Prädikate zur rekursiven Listenverarbeitung demonstrieren Basistechniken für beliebig komplexe Operationen auf Listen: –member/2 Zugriff auf Listenelemente. –append/3 Konkatenation von Listen. –delete/3 Löschen/Einfügen in Listen. –reverse/2 Umkehren von Listen.

6 GK Prolog - Rekursive Listenverarbeitung 6 append/3 % append(L1,L2,L3) append([],L,L). append([H|T1],L,[H|T2]):- append(T1,L,T2). append/3 setzt drei Listenobjekte derart in Beziehung, daß das dritte Argument die Konkatenation (Verkettung, Aneinanderhängen) der ersten mit der zweiten Liste repräsentiert: L 1 ^L 2 = L 3

7 GK Prolog - Rekursive Listenverarbeitung 7 Anfragen an append/3 ?- append([1,2,3],[4,5,6],[1,2,3,4,5,6]). yes ?- append([1,2,3],[4,5,6],L). L = [1,2,3,4,5,6] yes ?- append(L,[4,5,6],[1,2,3,4,5,6]). L = [1,2,3] yes ?- append([1,2,3],L,[1,2,3,4,5,6]). L = [4,5,6] yes

8 GK Prolog - Rekursive Listenverarbeitung 8 Präfixe & Suffixe ?- append(L1,L2,[1,2,3,4]). L1 = [], L2 = [1,2,3,4] ->; L1 = [1], L2 = [2,3,4] ->; L1 = [1,2], L2 = [3,4] ->; L1 = [1,2,3], L2 = [4] ->; L1 = [1,2,3,4], L2 = [] ->; no append/3 ist auch in der Lage, eine Liste in alle Präfixe und Suffixe zu zerlegen.

9 GK Prolog - Rekursive Listenverarbeitung 9 append/3 deklarativ append([],L,L). append([H|T1],L,[H|T2]):- append(T1,L,T2). –Die Konkatenation einer Liste L an die leere Liste liefert L als Ergebnis. –Die Konkatenation einer Liste L an eine nichtleere Liste L1 ist L3, wobei der Kopf von L3 identisch mit dem Kopf von L1 ist und der Rest von L3 die Konkatenation von L an den Rest von L1 repräsentiert.

10 GK Prolog - Rekursive Listenverarbeitung 10 append/3 prozedural (0) CALL: append([1,2,3],[4,5,6], _0084) (1) CALL: append( [2,3],[4,5,6], _06F0) (2) CALL: append( [3],[4,5,6], _0830) (3) CALL: append( [],[4,5,6], _0970) (3) EXIT(D): append( [],[4,5,6], [4,5,6]) (2) EXIT(D): append( [3],[4,5,6], [3,4,5,6]) (1) EXIT(D): append( [2,3],[4,5,6], [2,3,4,5,6]) (0) EXIT(D): append([1,2,3],[4,5,6],[1,2,3,4,5,6])

11 GK Prolog - Rekursive Listenverarbeitung 11 delete/3 % delete(Term,Liste1,Liste2) delete(X,[X|T],T). delete(X,[H|T1],[H|T2]):- delete(X,T1,T2). delete/3 setzt einen Term und zwei Listen derart in Beziehung, daß Liste2 das Ergebnis des einmaligen Löschens von Term an einer beliebigen Position in Liste1 repräsentiert.

12 GK Prolog - Rekursive Listenverarbeitung 12 Anfragen an delete/3 I ?- delete(2,[1,2,3],[1,2]). yes ?- delete(2,[1,2,3],L). L = [1,3], yes ?- delete(X,[1,2,3],[1,3]). X = 2, yes ?- delete(2,L,[1,3]).% insert/3 L = [2,1,3] ->; L = [1,2,3] ->; L = [1,3,2] ->; no

13 GK Prolog - Rekursive Listenverarbeitung 13 Anfragen an delete/3 II ?- delete(X,[1,2,3],L). X = 1, L = [2,3] ->; X = 2, L = [1,3] ->; X = 3, L = [1,2] ->; no ?- delete(x,L,[a,b,c]). L = [x,a,b,c] ->; L = [a,x,b,c] ->; L = [a,b,x,c] ->; L = [a,b,c,x] ->; no

14 GK Prolog - Rekursive Listenverarbeitung 14 delete/3 deklarativ delete(X,[X|T],T). delete(X,[H|T1],[H|T2]):- delete(X,T1,T2). –Das Löschen von X aus dem Kopf einer Liste liefert als Ergebnis den Rest T. –Das Löschen von X aus dem Rest T1 einer Liste L1 liefert die Liste T2, die Rest einer Liste L2 ist, deren Kopf H mit dem Kopf von L1 identisch ist.

15 GK Prolog - Rekursive Listenverarbeitung 15 delete/3 prozedural (0) CALL: delete(1,[1,2,1,3], _0084) (0) EXIT(N):delete(1,[1,2,1,3],[2,1,3]) Backtracking (0) REDO: delete(1,[1,2,1,3],[2,1,3]) (1) CALL: delete(1, [2,1,3], _0728) (2) CALL: delete(1, [1,3], _0868) (2) EXIT(N):delete(1, [1,3], [3]) (1) EXIT(N):delete(1, [2,1,3], [2,3]) (0) EXIT(N):delete(1,[1,2,1,3],[1,2,3]) Backtracking (0) REDO: delete(1,[1,2,1,3],[1,2,3]) (1) REDO: delete(1, [2,1,3], [2,3]) (2) REDO: delete(1, [1,3], [3]) (3) CALL: delete(1, [3], _09A8) (4) CALL: delete(1, [], _0AE8) (4) FAIL: delete(1, [], _0AE8) (3) FAIL: delete(1, [3], _09A8) (2) FAIL: delete(1, [1,3], _0868) (1) FAIL: delete(1, [2,1,3], _0728) (0) FAIL: delete(1,[1,2,1,3], _0084) No more solutions.

16 GK Prolog - Rekursive Listenverarbeitung 16 Naives reverse/2 % reverse(Liste,UmgekehrteListe) reverse([],[]). reverse([H|T],RL):- reverse(T,RT), append(RT,[H],RL). reverse/2 setzt zwei Listenobjekte derart miteinander in Beziehung, daß die eine Liste die Elemente der anderen Liste in umgekehrter Reihenfolge enthält.

17 GK Prolog - Rekursive Listenverarbeitung 17 Anfragen an reverse/2 ?- reverse([1,2,3],[3,2,1]). yes ?- reverse([1,2,3],L). L = [3,2,1] yes ?- reverse(L,[3,2,1]). L = [1,2,3] yes ?- reverse([1,2,3],[1,2,3]). no

18 GK Prolog - Rekursive Listenverarbeitung 18 Naives reverse/2 deklarativ reverse([],[]). reverse([H|T],RL):- reverse(T,RT), append(RT,[H],RL). –Die Umkehrung der leeren Liste ist die leere Liste. –Die Umkehrung einer nichtleeren Liste [H|T] ergibt sich, indem man an die Umkehrung von T eine Liste mit dem Kopf H als einzigem Element konkateniert.

19 GK Prolog - Rekursive Listenverarbeitung 19 Naives reverse/2 prozedural (0) CALL: reverse([1,2,3], _0084) (1) CALL: reverse( [2,3], _0754) (2) CALL: reverse( [3], _08AC) (3) CALL: reverse( [], _0A04) (3) EXIT(D):reverse( [], []) (4) CALL: append( [],[3], _08AC) (4) EXIT(D):append( [],[3], [3]) (2) EXIT(D):reverse( [3], [3]) (5) CALL: append( [3],[2], _0754) (6) CALL: append( [],[2], _0F70) (6) EXIT(D):append( [],[2], [2]) (5) EXIT(D):append( [3],[2], [3,2]) (1) EXIT(D):reverse( [2,3], [3,2]) (7) CALL: append([3,2],[1], _0084) (8) CALL: append( [2],[1], _13AC) (9) CALL: append( [],[1], _14EC) (9) EXIT(D):append( [],[1], [1]) (8) EXIT(D):append( [2],[1], [2,1]) (7) EXIT(D):append([3,2],[1],[3,2,1]) (0) EXIT(D):reverse( [1,2,3],[3,2,1]) reverse([],[]). reverse([H|T],RL):- reverse(T,RT), append(RT,[H],RL).

20 GK Prolog - Rekursive Listenverarbeitung 20 Warum naiv? Das naive reverse/2 wird naiv genannt, weil das zu lösende Problem eigentlich mit linearer Laufzeit gelöst werden könnte. Das naive reverse/2 benötigt jedoch durch den Einsatz von append/3 kubische Laufzeit. –Listenlänge: n –linear:n Schritte –kubisch:n 3 Schritte

21 GK Prolog - Rekursive Listenverarbeitung 21 reverse/3 mit Akkumulator % reverse(Liste,UmgekehrteListe) reverse(L,RL):- reverse(L,[],RL). reverse([],L,L). reverse([H|T],RT,RL):- reverse(T,[H|RT],RL). reverse/2 wird mit reverse/3 bewiesen, wobei ein Akkumulator (Aufsammler) mit der leeren Liste initialisiert wird.

22 GK Prolog - Rekursive Listenverarbeitung 22 Funktionsweise von reverse/3 reverse(L,RL):- reverse(L,[],RL). reverse([],L,L). reverse([H|T],RT,RL):- reverse(T,[H|RT],RL). Der Kopf der ersten Liste wird im rekursiven Aufruf als Kopf des Akkumulators gesetzt. Die erste Liste wird kleiner, der Akkumulator wächst. Die Elemente aus der ersten Liste geraten im Akkumulator in umgekehrte Reihenfolge. Wenn die erste Liste leer ist, liefert der Akkumulator das Ergebnis. Die Anzahl der Beweisschritte wächst linear zur Listenlänge.

23 GK Prolog - Rekursive Listenverarbeitung 23 reverse/3 Trace (0) CALL: reverse([1,2,3,4], _0084) (1) CALL: reverse([1,2,3,4], [], _0084) (2) CALL: reverse( [2,3,4], [1], _0084) (3) CALL: reverse( [3,4], [2,1], _0084) (4) CALL: reverse( [4], [3,2,1], _0084) (5) CALL: reverse( [],[4,3,2,1], _0084) (5) EXIT(D): reverse( [],[4,3,2,1],[4,3,2,1]) (4) EXIT(D): reverse( [4], [3,2,1],[4,3,2,1]) (3) EXIT(D): reverse( [3,4], [2,1],[4,3,2,1]) (2) EXIT(D): reverse( [2,3,4], [1],[4,3,2,1]) (1) EXIT(D): reverse([1,2,3,4], [],[4,3,2,1]) (0) EXIT(D): reverse([1,2,3,4], [4,3,2,1])

24 GK Prolog - Rekursive Listenverarbeitung 24 Akkumulatoren Normale rekursive Listenverarbeitung: –Zerlegung im Kopf der Regel. –Rekursive Weiterverarbeitung des Rests. –Liste wird mit Rekursion kürzer. Listenverarbeitung mit Akkumulator: –Rest steht im Kopf der Regel. –Zerlegung im rekursiven Aufruf. –Liste wird mit Rekursion länger. p(...,[H|T],...):-..., p(...,T,...),... p(...,T,...):-..., p(..., [H|T],...),...

25 GK Prolog - Rekursive Listenverarbeitung 25 permute/2 % permute(Liste1,Liste2). permute([],[]). permute([H|T],P):- permute(T,TP), delete(H,P,TP). permute/2 bildet eine Relation über zwei Listenobjekten, wobei die eine Liste eine beliebige Permutation der anderen ist.

26 GK Prolog - Rekursive Listenverarbeitung 26 Anfrage an permute/2 n! (Fakultät) Lösungen bei Listenlänge n. ?- permute([1,2,3],P). P = [1,2,3] ->; P = [2,1,3] ->; P = [2,3,1] ->; P = [1,3,2] ->; P = [3,1,2] ->; P = [3,2,1] ->; no 4! = 24 5! = 120 6! = 720 7! = ! = ! = ! = 2,65...e+32

27 GK Prolog - Rekursive Listenverarbeitung 27 Permutationssortieren sort(L1,L2):- permute(L1,L2), ordered(L2). ordered([]). ordered([_]). ordered([X,Y|T]):- X =< Y, ordered([Y|T]). sort/2 bildet eine Relation über zwei Listen mit Zahlenelementen, wobei die zweite Liste eine sortierte Version der ersten ist. Permutationssortieren ist bezüglich Komplexität eines der schlechtesten Sortierverfahren.

28 GK Prolog - Rekursive Listenverarbeitung 28 Anfrage an sort/2 ?- sort([9,8,2,4,1,3,7,5,6],L). L = [1,2,3,4,5,6,7,8,9] ->; no Zum Beweis der Anfrage wurden im Generiere- und-Teste-Verfahren 9! = Permutationen erzeugt, obwohl nur eine der Permutationen eine Lösung repräsentiert.

29 GK Prolog - Rekursive Listenverarbeitung 29 Quicksort qs([],[]). qs([H|T],S):- partition(T,H,L,B), qs(L,LS), qs(B,BS), append(LS,[H|BS],S). Leere Liste ist sortiert. H ist Vergleichselement. T mit H in L und B teilen. L nach LB sortieren. B nach BS sortieren. LS^BS=S(ortierte Liste). Quicksort teilt eine Liste mittels Vergleichselement in zwei Listen mit kleineren bzw. größeren Elementen, die dann rekursiv sortiert und zur sortierten Gesamtliste konkateniert werden.

30 GK Prolog - Rekursive Listenverarbeitung 30 partition/4 partition([],_,[],[]). partition([H|T],X,[H|L],B):- H =< X, partition(T,X,L,B). partition([H|T],X,L,[H|B]):- H > X, partition(T,X,L,B). Termination. H in L(ower), falls H kleiner X. Rest T partitionieren. H in B(igger), falls H größer X. Rest T partitionieren. partition/2 hat lineare Komplexität, Quicksort normaler- weise n log n. Hier kommt leider wegen append/3 nach der Rekursion noch eine quadratische Komponente hinzu.


Herunterladen ppt "Rekursive Listenverarbeitung Prolog Grundkurs WS 99/00 Christof Rumpf"

Ähnliche Präsentationen


Google-Anzeigen