Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Das RSA-Verfahren Klaus Becker 2014. 2 Das RSA-Verfahren An: Von: Hallo Bob!

Ähnliche Präsentationen


Präsentation zum Thema: "Das RSA-Verfahren Klaus Becker 2014. 2 Das RSA-Verfahren An: Von: Hallo Bob!"—  Präsentation transkript:

1 Das RSA-Verfahren Klaus Becker 2014

2 2 Das RSA-Verfahren An: Von: Hallo Bob!

3 3 Teil 1 Experimente mit CrypTool

4 4 Einen ersten Eindruck vom RSA-Verfahren kann man sich mit dem Software-Werkzeug CrypTool verschaffen. Dieses Werkzeug macht die wichtigsten Schritte des RSA-Verfahrens transparent. Experimente mit CrypTool lassen direkt erkennen, dass das RSA-Verfahren auf Berechnungen mit Zahlen beruht. Die Experimente führen aber noch nicht dazu, dass man versteht, warum gerade dieses Verfahren heutzutage benutzt wird. Hierzu sind vertiefende Untersuchungen erforderlich.

5 5 Experimente mit CrypTool Mit den Menüpunkten [Einzelverfahren][RSA- Kryptosystem][RSA-Demo...] kommst du in Bereich, in dem das RSA- Verfahren durchgespielt werden kann. Gib zunächst zwei verschiedene Primzahlen in die dafür vorgesehenen Felder ein. Mit [Parameter aktualisieren] werden dann die beiden Schlüssel erzeugt.

6 6 Experimente mit CrypTool Wähle jetzt [Optionen für Alphabet und Zahlensystem...] und lege die vom Programm vorgesehenen Optionen fest. Am besten übernimmst du zunächst die Einstellungen in der Abbildung (beachte das Leerzeichen im Alphabet).

7 7 Experimente mit CrypTool Jetzt kannst du Texte (mit Zeichen aus dem voreingestellten Alphabet) verschlüsseln und die Verschlüsselung auch wieder entschlüsseln.

8 8 Vorbemerkung Das RSA-Verfahren basiert auf modularem Rechnen. Um die Details des RSA-Verfahrens zu verstehen, muss man modulares Rechnen verstehen und einige zahlentheoretische Zusammenhänge kennen. Im Unterricht kann man die mathematischen Grundlagen vorab erarbeiten, oder – wie hier – bei der Entwicklung des RSA-Verfahres je nach Bedarf bereitstellen.

9 9 Teil 2 Verschlüsselung mit modularer Addition

10 10 Vorbemerkung Als Vorstufe zum RSA-Verfahren betrachten wir hier ein Verfahren, das auf modularer Addition beruht und bereits viele Ähnlichkeiten zum RSA-Verfahren aufweist. Der Vorteil dieser Vorgehensweise besteht darin, dass wir an das sehr einfache Caesar- Verfahren anknüpfen können und durch Verallgemeinerung schrittweise zu den zahlenbasierten Verfahren gelangen können.

11 11 Den Anfang macht Caesar A B C D E F G H I J K L M N O P Q R S T U V W X Y Z D E F G H I J K L M N O P Q R S T U V W X Y Z A B C Schlüssel: D Quelltext: SALVEASTERIX Geheimtext: VDOYHDVWHULA

12 12 Caesar-Verfahren mit Zahlen Codierung: Umwandlung von Zeichen in Zahlen Verschlüsselung: Verarbeitung von Zahlen Entschlüsselung: Verarbeitung von Zahlen Decodierung: Umwandlung von Zahlen in Zeichen A → 00 B → Z → 25 A,S,T,E,R,I,X 00,18,19,04,17,08,23 (00 + 3) % 26 = 03 (18 + 3) % 26 = (23 + 3) % 26 = 00 00,18,19,04,17,08,23 03,21,22,07,20,11,00 ( ) % 26 = 00 ( ) % 26 = ( ) % 26 = 23 03,21,22,07,20,11,00 00,18,19,04,17,08,23 A → 00 B → Z → 25 00,18,19,04,17,08,23 A,S,T,E,R,I,X

13 13 Caesar-Variation: zusätzliche Zeichen Codierung: Umwandlung von Zeichen in Zahlen Verschlüsselung: Verarbeitung von Zahlen Entschlüsselung: Verarbeitung von Zahlen Decodierung: Umwandlung von Zahlen in Zeichen ' ' → 00 'A' → 'Z' → 26 N,A,C,H,,R,O,M 14,01,03,08,00,18,15,13 (14 + 9) % 27 = 23 (01 + 9) % 27 = (13 + 9) % 27 = 22 14,01,03,08,00,18,15,13 23,10,12,17,09,00,24,22 ( ) % 27 = 14 ( ) % 27 = ( ) % 27 = 13 23,10,12,17,09,00,24,22 14,01,03,08,00,18,15,13 ' ' → 00 'A' → 'Z' → 26 14,01,03,08,00,18,15,13 N,A,C,H,,R,O,M

14 14 Caesar-Variation: verallgeinerte Addition Codierung: Umwandlung von Zeichen in Zahlen Verschlüsselung: Verarbeitung von Zahlen (e, n) = (18, 30) Entschlüsselung: Verarbeitung von Zahlen (d, n) = (12, 30) Decodierung: Umwandlung von Zahlen in Zeichen ' ' → 00 'A' → 'Z' → 26 D,A,,I,S,T,,E,S 04,01,00,09,19,20,00,05,19 ( ) % 30 = 22 ( ) % 30 = ( ) % 30 = 07 04,01,00,09,19,20,00,05,19 22,19,18,27,07,08,18,23,07 ( ) % 30 = 04 ( ) % 30 = ( ) % 30 = 19 22,19,18,27,07,08,18,23,07 04,01,00,09,19,20,00,05,19 ' ' → 00 'A' → 'Z' → 26 04,01,00,09,19,20,00,05,19 D,A,,I,S,T,,E,S

15 15 Caesar-Variation: Zeichenblöcke Codierung: Umwandlung von Zeichen in Zahlen Verschlüsselung: Verarbeitung von Zahlen (e, n) = (112233, ) Entschlüsselung: Verarbeitung von Zahlen (d, n) = (209088, ) Decodierung: Umwandlung von Zahlen in Zeichen ' ' → 00 'A' → 'Z' → 26 HAL,LO 80112, ( ) % = ( ) % = , , ( ) % = ( ) % = , , ' ' → 00 'A' → 'Z' → , HAL,LO

16 16 Verfahren mit modularer Addition Schritt 1: Wahl der Blocklänge und Zerlegung des Textes Die Blocklänge legt die Länge der Texteinheiten fest, die mit Zahlen codiert werden und anschließend verschlüsselt werden. Je größer die Blocklänge, desto mehr Zahlen benötigt man zur Codierung der Texteinheiten. Bei einer Blocklänge 3 wird beispielweise der Text 'CAESAR' wie folgt in Texteinheiten zerlegt: 'CAE','SAR' Bei einer Zerlegung eines Textes kann es vorkommen, dass eine Texteinheit übrig bleibt, die nicht mehr die gesamte Blocklänge hat. In diesem Fall füllen wir den Text mit zusätzlichen Zeichen (hier Leerzeichen) auf: 'HAL','LO ' (e, n) f(x, (e,n)) = [x+e]%n (d, n) x0, x1, x2,... A(lice) Klartext f*(y, (d,n)) = [y+d]%n öffentl. Schlüssel von B(ob) x0, x1, x2,... Klartext y0, y1, y2,... Geheimtext Verschlüsselungsfunktion Entschlüsselungsfunktion "HALLO..." Codierung "HALLO..." Codierung B(ob) privat. Schlüssel von B(ob) Schlüsselerzeugung: Wähle n größer als die maximale Codezahl. Wähle e mit e

17 17 Verfahren mit modularer Addition Schritt 2: Wahl der Codierung Die Codierung ordnet jeder Texteinheit eine natürliche Zahl zu. Die Zuordnung muss eindeutig sein, so dass eine Decodierung möglich ist. Codierung von Zeichenblöcken: ' ' -> 000 ' A' -> 001 ' B' -> ' Z' -> 026 'A ' -> 027 'AA' -> 'ZZ' -> 728 Codierung von Zeichenblöcken: ' ' -> 0000 ' A' -> 0001 ' B' -> ' Z' -> 0026 'A ' -> 0100 'AA' -> 'ZZ' -> 2626 Codierung des Alphabets: ' ' -> 00 'A' -> 'Z' -> 26 (e, n) f(x, (e,n)) = [x+e]%n (d, n) x0, x1, x2,... A(lice) Klartext f*(y, (d,n)) = [y+d]%n öffentl. Schlüssel von B(ob) x0, x1, x2,... Klartext y0, y1, y2,... Geheimtext Verschlüsselungsfunktion Entschlüsselungsfunktion "HALLO..." Codierung "HALLO..." Codierung B(ob) privat. Schlüssel von B(ob) Schlüsselerzeugung: Wähle n größer als die maximale Codezahl. Wähle e mit e

18 18 Verfahren mit modularer Addition Schritt 3: Wahl des Moduls und der Verschiebezahl Die Modulzahl n ist eine beliebige natürliche Zahl. Sie muss nur so gewählt werden, dass sie größer als die größtmögliche Codezahl einer Texteinheit ist. Die zu wählende Größe hängt demnach von der Blocklänge und der gewählten Codierung ab. Die Verschiebezahl e zum Verschlüsseln (e-ncrypt) ist eine beliebige natürliche Zahl, die kleiner als die Modulzahl n ist. Beide zusammen - Verschiebezahl und Modul - werden zur Verschlüsselung benötigt. Das Zahlenpaar (e, n) bildet den Schlüssel zur Verschlüsselung eines Textes. Dieser Schlüssel wird auch öffentlicher Schlüssel genannt. Schritt 4: Bestimmung des Gegenschlüssels Die Verschiebezahl d zum Entschlüsseln (d-ecrypt) ergibt sich direkt aus e und n: Es muss e+d=m gelten. Also ist d = n - e. Das Zahlenpaar (d, n) bildet den Schlüssel zur Entschlüsselung eines Textes. Dieser Schlüssel wird auch privater Schlüssel genannt. (e, n) f(x, (e,n)) = [x+e]%n (d, n) x0, x1, x2,... A(lice) Klartext f*(y, (d,n)) = [y+d]%n öffentl. Schlüssel von B(ob) x0, x1, x2,... Klartext y0, y1, y2,... Geheimtext Verschlüsselungsfunktion Entschlüsselungsfunktion "HALLO..." Codierung "HALLO..." Codierung B(ob) privat. Schlüssel von B(ob) Schlüsselerzeugung: Wähle n größer als die maximale Codezahl. Wähle e mit e

19 19 Verfahren mit modularer Addition Schritt 5: Verschlüsselung codierter Texte Zur Verschlüsselung eine Codezahl x benötigt man den öffentlichen Schlüssel (e, m). Die Verschlüsselung erfolgt hier durch modulare Addition: x -> [x + e]%n Schritt 6: Entschlüsselung codierter Texte Zur Entschlüsselung eine Codezahl y benötigt man den privaten Schlüssel (d, n). Die Entschlüsselung erfolgt analog zur Verschlüsselung: y -> [y + d]%n (e, n) f(x, (e,n)) = [x+e]%n (d, n) x0, x1, x2,... A(lice) Klartext f*(y, (d,n)) = [y+d]%n öffentl. Schlüssel von B(ob) x0, x1, x2,... Klartext y0, y1, y2,... Geheimtext Verschlüsselungsfunktion Entschlüsselungsfunktion "HALLO..." Codierung "HALLO..." Codierung B(ob) privat. Schlüssel von B(ob) Schlüsselerzeugung: Wähle n größer als die maximale Codezahl. Wähle e mit e

20 20 Übung Benutze unsere Standardcodierung mit Blocklänge 2. Wähle einen öffentlichen Schlüssel (wie z.B. (567, 2911)) und verschlüssele eine selbst gewählte (nicht zu lange) Nachricht mit dem oben beschriebenen Verfahren mit modularer Addition. Gib die Nachricht an deinen Nachbarn weiter. Teile ihm auch den benutzten öffentlichen Schlüssel mit. Dein Nachbar soll jetzt die Nachricht wieder entschlüsseln.

21 21 Durchführung mit Python Aufgabe: Eine Implementierung nutzen Lade die Datei chiffriersystemModularesAddieren.py (siehe inf-schule) herunter. Diese Datei enthält eine ganze Reihe von Funktionen, die Teilaufgaben beim Verfahren mit modularer Addition übernehmen. Mit den Funktionen kannst du jetzt interaktiv das Verfahren mit modularer Addition durchspielen. Führe selbst weitere Tests durch. >>> abc = ' ABCDEFGHIJKLMNOPQRSTUVWXYZ' >>> block = 2 >>> oeffentlicherSchluessel = (2102, 3000) >>> privaterSchluessel = (898, 3000) >>> quelltext = 'ASTERIX' >>> quellcode = codierung(quelltext, block, abc) >>> quellcode [119, 2005, 1809, 2400] >>> geheimcode = verschluesselung(quellcode, oeffentlicherSchluessel) >>> geheimcode [2221, 1107, 911, 1502] >>> entschluesseltercode = verschluesselung(geheimcode, privaterSchluessel) >>> entschluesseltercode [119, 2005, 1809, 2400] >>> entschluesseltertext = decodierung(entschluesseltercode, block, abc) >>> entschluesseltertext 'ASTERIX'

22 22 Durchführung mit Python Aufgabe : Eine Implementierung nutzen Alternativ kann man auch ein kleines Testprogramm wie das folgende erstellen: from chiffriersystemModulareAddition import * # Vorgaben abc = ' ABCDEFGHIJKLMNOPQRSTUVWXYZ' block = 2 oeffentlicherSchluessel = (2102, 3000) privaterSchluessel = (898, 3000) # Verarbeitung quelltext = 'COSINUS' quellcode = codierung(quelltext, block, abc) geheimcode = verschluesselung(quellcode, oeffentlicherSchluessel) entschluesseltercode = verschluesselung(geheimcode, privaterSchluessel) entschluesseltertext = decodierung(entschluesseltercode, block, abc) # Ausgaben print('Quelltext:') print(quelltext) print('Quellcode:') print(quellcode) print('Geheimcode:') print(geheimcode) print('entschlüsselter Code:') print(entschluesseltercode) print('entschlüsselter Text:') print(entschluesseltertext)

23 23 Korrektheit Korrektheit: Die Entschlüsselung macht die Verschlüsselung rückgängig: x → [x + e]%n → [[x + e]%n + d]%n = [x + [e + d]%n]%n = [x]%n = x (e, n) f(x, (e,n)) = [x+e]%n (d, n) x0, x1, x2,... A(lice) Klartext f*(y, (d,n)) = [y+d]%n öffentl. Schlüssel von B(ob) x0, x1, x2,... Klartext y0, y1, y2,... Geheimtext Verschlüsselungsfunktion Entschlüsselungsfunktion "HALLO..." Codierung "HALLO..." Codierung B(ob) privat. Schlüssel von B(ob) Schlüsselerzeugung: Wähle n größer als die maximale Codezahl. Wähle e mit e

24 24 Sicherheit Sicherheit: Das additive Chiffrierverfahren ist nicht sicher, da man aus dem öffentlichen Schlüssel sofort den privaten Schlüssel bestimmen kann. (e, n) f(x, (e,n)) = [x+e]%n (d, n) x0, x1, x2,... A(lice) Klartext f*(y, (d,n)) = [y+d]%n öffentl. Schlüssel von B(ob) x0, x1, x2,... Klartext y0, y1, y2,... Geheimtext Verschlüsselungsfunktion Entschlüsselungsfunktion "HALLO..." Codierung "HALLO..." Codierung B(ob) privat. Schlüssel von B(ob) Schlüsselerzeugung: Wähle n größer als die maximale Codezahl. Wähle e mit e

25 25 Teil 3 Exkurs - Modulares Rechnen

26 26 Uhrenaddition Modulare Addition kennt man aus dem täglichen Leben. Aufgabe: Ergänze die in der Tabelle fehlenden Angaben zur Uhrzeit (in MOZ / Moskauer Zeit). Wie rechnet man mit Uhrzeiten? Wie kann man z.B. direkt aus 17 und 149 zum Ergebnis 22 gelangen?

27 27 Modulare Gleichheit Verallgemeinerte Uhrzeiten Bei Beginn der Reise in Moskau ist es 17 Uhr. Nach 149 Stunden wird das Ziel Wladiwostok erreicht. Es ist jetzt (17+149) Uhr bzw. 166 Uhr. Das entspricht - auch im fernen Sibirien - 22 Uhr. Man kann diese Uhrzeit leicht rechnerisch ermitteln indem man den Rest bei der Division durch 24 ermittelt: 166 % 24 = 22 Uhrzeiten werden eigentlich nur mit den Zahlen 0, 1,..., 23 angegeben. Im Alltag lässt man auch manchmal die Zahl 24 zu. 24 Uhr ist dasselbe wie 0 Uhr. Die 24 ist - bei Uhrzeitangaben - also gleich zu behandeln wie die Uhr und 55 Uhr (als verallgemeinerte Uhrzeiten) würden für dieselben Uhrzeiten stehen, weil der zyklisch sich drehende und immer wieder bei 0 neu beginnende Uhrzeiger dieselbe Stelle anzeigen würde. Rechnerisch zeigt sich das, indem beide Zahlen 31 und 55 denselben Rest bei der Division durch 24 hinterlassen. Def.: Vorgegeben sei eine natürliche Zahl n. Zwei natürliche Zahlen a und b heißen gleich modulo n bzw. kongruent modulo n genau dann, wenn sie beide den gleichen Rest bei der Division durch n erzeugen. Beispiel: 31 und 55 sind gleich modulo 24, denn es gilt: [31]%24 = 7 = [55]%24

28 28 Modulare Addition Aufgabe: (a) Führe die Rechnung für weitere Städte durch. (b) Darf man für EKATERINBURG auch so rechen: [ ]%24 = [17]%24 + [26]%24 =... (c) Geht das auch für NOVOSIBIRSK? Was müsste man hier noch tun? [ ]%24 = [17]%24 + [46]%24 =...

29 29 Modulare Addition Vorgegeben sei eine natürliche Zahl n. Zwei natürliche Zahlen a und b werden modulo n addiert, indem man sie addiert und anschließend von der Summe den Rest bei der Division durch n berechnet. Das Ergebnis ist also [a+b]%n. Beachte, dass das Ergebnis bei der Addition modulo n immer eine Zahl kleiner als n ist. Rechengesetz (Modulare Gleichheit bei der Addition): Aus [a1]%n = [b1]%n und [a2]%n = [b2]%n folgt [a1+a2]%n = [b1+b2]%n. Das erste Rechengesetz besagt, dass Zahlen, die modulo n gleich sind, auch zu gleichen Additionsergebnissen modulo n führen. Rechengesetz (Addition und iterierte Modulberechnung): [a+b]%n = [[a]%n + [b]%n]%n Das zweite Rechengesetz erlaubt es, bei der Addition modulo n zuerst die Summanden zu verkleinern und dann erst die Addition durchzuführen. Aufgabe: Erstelle selbst eine Verknüpfungstafel für die Addition modulo n = 5.

30 30 Modulare Multiplikation Vorgegeben sei eine natürliche Zahl n. Zwei natürliche Zahlen a und b werden modulo n multipliziert, indem man sie multipliziert und anschließend vom Produkt den Rest bei der Division durch n berechnet. Das Ergebnis ist also [a*b]%n. Beachte, dass das Ergebnis bei der Multiplikation modulo n immer eine Zahl kleiner als n ist. Rechengesetz (Modulare Gleichheit bei der Multiplikation): Aus [a1]%n = [b1]%n und [a2]%n = [b2]%n folgt [a1*a2]%n = [b1*b2]%n. Das erste Rechengesetz besagt, dass Zahlen, die modulo n gleich sind, auch zu gleichen Multiplikationsergebnissen modulo n führen. Rechengesetz (Multiplikation und iterierte Modulberechnung): [a*b]%n = [[a]%n * [b]%n]%n Das zweite Rechengesetz erlaubt es, bei der Multiplikation modulo n zuerst die Faktoren zu verkleinern und dann erst die Multiplikation durchzuführen. Aufgabe: Erstelle selbst eine Verknüpfungstafel für die Multiplikation modulo n = 8.

31 31 Modulare Potenz Vorgegeben sei eine natürliche Zahl n. Eine natürliche Zahl a wird mit einer natürlichen Zahl x modulo n potenziert, indem man sie mit x potenziert und anschließend von der Potenz den Rest bei der Division durch n berechnet. Das Ergebnis ist also [ax]%n. Beachte, dass das Ergebnis bei der Potenzbildung modulo n immer eine Zahl kleiner als n ist. Aufgabe: (a) Berechne [3 4 ]%5. (b) Berechne [6 4 ]%5. Berechne auch [([([([6]%5)*6]%5)*6]%5)*6]%5. Was stellst du fest? (c) Welche Vorteile ergeben sich bei großen Zahlen, wenn man [a x ]%n wie folgt berechnet: [(...([([a]%n)*a]%n)...)*a]%n ? Rechengesetz (Modulare Gleichheit bei der Potenzbildung): Aus [a]%n = [b]%n folgt [a k ]%n = [b k ]%n. Das erste Rechengesetz besagt, dass Zahlen, die modulo n gleich sind, auch zu gleichen Potenzierungsergebnissen modulo n führen. Rechengesetz (Potenzbildung und iterierte Potenzbildung): [a k ]%n = [[a%n] k ]%n = [(...([([a]%n)*a]%n)...)*a]%n Das zweite Rechengesetz erlaubt es, bei der Potenzbildung modulo n zuerst die Basis zu verkleinern und dann erst die Multiplikation durchzuführen.

32 32 Aufgaben Bestätige die Rechengesetze für modulare Addition und Multiplikation anhand von Beispielen. Du kannst Python als Taschenrechner benutzen. >>> n = 14 >>> a1 = 16 >>> b1 = 19 >>> a2 = 44 >>> b2 = 75 >>> a1%n 2 >>> a2%n 2 >>> b1%n 5 >>> b2%n 5 >>> (a1+b1)%n...

33 33 Teil 4 Verschlüsselung mit modularer Multiplikation

34 34 Vorbemerkung Statt modularer Addition verwenden wir jetzt modulare Multiplikation als Grundlage eines Verschlüsselungsverfahres. Dieses Verfahen kann ebenfalls als Vorstufe zum RSA-Verfahren angesehen werden. Wir werden hier sehen, wie die Sicherheit eines Verfahrens davon abhängt, ob man über schnelle Algorithmen für bestimmte Problemstellungen verfügt.

35 35 Multiplikation statt Addition (e, n) f(x, (e,n)) = [x*e]%n (d, n) x0, x1, x2,... A(lice) Klartext f*(y, (d,n)) = [y*d]%n öffentl. Schlüssel von B(ob) x0, x1, x2,... Klartext y0, y1, y2,... Geheimtext Verschlüsselungsfunktion Entschlüsselungsfunktion "HALLO..." Codierung "HALLO..." Codierung B(ob) privat. Schlüssel von B(ob) (e, n) f(x, (e,n)) = [x+e]%n (d, n) x0, x1, x2,... A(lice) Klartext f*(y, (d,n)) = [y+d]%n öffentl. Schlüssel von B(ob) x0, x1, x2,... Klartext y0, y1, y2,... Geheimtext Verschlüsselungsfunktion Entschlüsselungsfunktion "HALLO..." Codierung "HALLO..." Codierung B(ob) privat. Schlüssel von B(ob)

36 36 Statt Addition... ' ' → 00 'A' → 'Z' → 26 N,I,X,,L,O,S 14,09,24,00,12,15,19 (14 + 7) % 30 = 21 (09 + 7) % 30 = (19 + 7) % 30 = 26 14,09,24,00,12,15,19 21,16,01,07,19,22,26 ( ) % 30 = 14 ( ) % 30 = ( ) % 30 = 19 21,16,01,07,19,22,26 14,09,24,00,12,15,19 ' ' → 00 'A' → 'Z' → 26 14,09,24,00,12,15,19 N,I,X,,L,O,S Codierung: Umwandlung von Zeichen in Zahlen Verschlüsselung: Verarbeitung von Zahlen (e, n) = (7, 30) Entschlüsselung: Verarbeitung von Zahlen (d, n) = (23, 30) Codierung: Umwandlung von Zeichen in Zahlen

37 37... benutze Multiplikation! ' ' → 00 'A' → 'Z' → 26 N,I,X,,L,O,S 14,09,24,00,12,15,19 (14 * 7) % 30 = 08 (09 * 7) % 30 = (19 * 7) % 30 = 13 14,09,24,00,12,15,19 08,03,18,00,24,15,13 Codierung: Umwandlung von Zeichen in Zahlen Verschlüsselung: Verarbeitung von Zahlen (e, n) = (7, 30) (08 * d) % 30 = 14 (03 * d) % 30 = (13 * d) % 30 = 19 08,03,18,00,24,15,13 14,09,24,00,12,15,19 Entschlüsselung: Verarbeitung von Zahlen (d, n) = (…, 30) ' ' → 00 'A' → 'Z' → 26 14,09,24,00,12,15,19 N,I,X,,L,O,S Codierung: Umwandlung von Zeichen in Zahlen

38 38... benutze Multiplikation! (08 * d) % 30 = 14 (03 * d) % 30 = (13 * d) % 30 = 19 08,03,18,00,24,15,13 14,09,24,00,12,15,19 Verschlüsselung: Verarbeitung von Zahlen (d, n) = (…, 30) ' ' → 00 'A' → 'Z' → 26 14,09,24,00,12,15,19 N,I,X,,L,O,S Codierung: Umwandlung von Zeichen in Zahlen Aufgabe: (a) Ermittle (durch Ausprobieren) die Zahl d, mit der man die Entschlüsselung hier völlig analog zur Verschlüsselung durchführen kann. (b) Welcher Zusammenhang besteht zwischen der Zahl e (hier 7) zum Verschlüsseln, der Zahl d (hier...) zum Entschlüsseln und der Modulzahl n (hier 30)?

39 39 Modulares Inverses Def.: Zwei natürliche Zahlen a und b heißen modular invers zueinander bezüglich n genau dann, wenn gilt: [a*b]%n = 1. Beispiel: [2*3]%5 = 1. Die beiden Zahlen 2 und 3 sind also modular invers zueinander bzgl. 5. Die Zahl 2 ist das modulare Inverse von 3 bzgl. des Moduls 5. Ebenso ist 3 das modulare Inverse von 2 bzgl. des Moduls 5. Aufgabe: (a) Betrachte den Fall n = 5. Bestimme zu a = 1, 2, 3, 4 jeweils das modulare Inverse bzgl. n. (b) Betrachte den Fall n = 8. Für welche der Zahlen a = 1, 2,..., 7 kann man das modulare Inverse bzgl. n bestimmen? (c) Betrachte den Fall n = 15. Hast du bereits eine Vermutung, für welche der Zahlen a = 1, 2,..., 14 man das modulare Inverse bzgl. n bestimmen kann?

40 40 Existenz des modularen Inversen Satz (über die Existenz des modularen Inversen): Gegeben sei eine natürliche Zahl n. Das modulare Inverse zu einer Zahl a ungleich Null existiert genau dann, wenn a und n keinen gemeinsamen Teiler größer als 1 haben - d.h., wenn ggT(a, n) = 1 gilt.

41 41 Verfahren und seine Korrektheit Korrektheit: Die Entschlüsselung macht die Verschlüsselung rückgängig: x → [x * e]%n → [[x * e]%n * d]%n = [x * [e * d]%n]%n = [x * 1]%n = x Es muss hierzu folgende Schlüsselbedingung erfüllt sein: [e * d]%n = 1 d.h.: d ist modulares Inverses zu e bzgl. n. (e, n) f(x, (e,n)) = [x*e]%n (d, n) x0, x1, x2,... A(lice) Klartext f*(y, (d,n)) = [y*d]%n öffentl. Schlüssel von B(ob) x0, x1, x2,... Klartext y0, y1, y2,... Geheimtext Verschlüsselungsfunktion Entschlüsselungsfunktion "HALLO..." Codierung "HALLO..." Codierung B(ob) privat. Schlüssel von B(ob) Schlüsselerzeugung: Wähle n größer als die maximale Codezahl. Wähle e mit e

42 42 Durchführung mit Python Aufgabe: Eine Implementierung testen Lade die Datei chiffriersystemModularesMultiplizieren.py (siehe inf-schule) herunter. Teste das Chiffriersystem mit selbst gewählten Beispielen. Dokumentiere die Ergebnisse. from chiffriersystemModulareMultiplikation import * # Vorgaben abc = ' ABCDEFGHIJKLMNOPQRSTUVWXYZ' block = 1 oeffentlicherSchluessel = (7, 30) privaterSchluessel = (13, 30) # Verarbeitung quelltext = 'ASTERIX' quellcode = codierung(quelltext, block, abc) geheimcode = verschluesselung(quellcode, oeffentlicherSchluessel) entschluesseltercode = verschluesselung(geheimcode, privaterSchluessel) entschluesseltertext = decodierung(entschluesseltercode, block, abc) # Ausgaben print('Quelltext:') print(quelltext) print('Quellcode:') print(quellcode) print('Geheimcode:') print(geheimcode) print('entschlüsselter Code:') print(entschluesseltercode) print('entschlüsselter Text:') print(entschluesseltertext)

43 43 Geheimcodes knacken Codierung: Umwandlung von Zeichen in Zahlen Verschlüsselung: öffentlicher Schlüssel (e, n) = (16, 33) Entschlüsselung: privater Schlüssel (d, n) = (...,...) Decodierung: Umwandlung von Zahlen in Zeichen 24, 12, 15, 29, 23, 12, 13 ' ' → 00 'A' → 'Z' → 26 …

44 44 Geheimcodes knacken Codierung: Umwandlung von Zeichen in Zahlen Verschlüsselung: öffentlicher Schlüssel (e, n) = (781, 2828) Entschlüsselung: privater Schlüssel (d, n) = (...,...) Decodierung: Umwandlung von Zahlen in Zeichen 1893, 236, 1973, 1292, 1077, 2028, 2431 ' ' → 00 'A' → 'Z' → 26 …

45 45 Bestimmung des modularen Inversen Ein naiver Ansatz besteht darin, der Reihe nach alle Zahlen durchzuprobieren, bis man das gewünschte Ergebnis gefunden hat. Beispiel: e = 16; n = 33 [16*1]%33 = 16; [16*2]%33 = 32;...; [16*31]%33 = 1 Diesen naiven Ansatz kann man auch leicht implementieren: def modInv(e, n): gefunden = False d = 1 while d <= n and not gefunden: if (e * d) % n == 1: gefunden = True else: d = d + 1 if d > n: d = -1 return d

46 46 Bestimmung des modularen Inversen Aufgabe: Teste den Baustein modInv mit selbst gewählten Beispielen. Überprüfe auch die Richtigkeit der Ergebnisse. Aufgabe: (a) Teste den Baustein mit großen Zahlen. Bestimme hierzu das modulare Inverse von a = bzgl. des Moduls n = (b) Bestimme zunächst mit dem Resultat aus (a) das modulare Inverse von b = 49 bzgl. des Moduls n = Bestimme anschließend das gesuchte modulare Inverse mit dem vorgegebenen Baustein. Welches Problem tritt hier auf? Hast du eine Vermutung, warum das Problem auftritt.

47 47 >>> modInvMitAusgaben(49, ) Anzahl der Versuche: Anzahl der Versuche: Anzahl der Versuche: Bestimmung des modularen Inversen def modInvMitAusgaben(e, n): gefunden = False d = 1 while d <= n and not gefunden: if d % == 0: print("Anzahl der Versuche: ", d) if (e * d) % n == 1: gefunden = True else: d = d + 1 if d > n: d = -1 return d für 10 Millionen Überprüfungen benötigt man mehr als 1 Sekunde!

48 48 Bestimmung des modularen Inversen Beispiel: d = 49 n = modInv(d, n) Um (= 10 7 ) Zahlen durchzuprobieren, benötigt ein Rechner derzeit mehr als 1s. Da das erwartete Ergebnis eine 54-stellige Zahl ist, wird der Rechner eine Zeit benötigen, die in der Größenordnung von s liegt. Dies sind mehr als Jahre. Bedenkt man, dass das Universum ein Alter von etwa Jahre hat, dann zeigt sich, wie ungeeignet das naive Vorgehen ist. Verwendbarkeit: Für größere Zahlen ist der naive Algorithmus zur Berechnung des modularen Inversen unbrauchbar. Für die gezeigten Zahlen benötigt ein Rechner länger, als das Universum alt ist.

49 49 Vielfachsummensatz Ein besseres Verfahren zur Bestimmung des modularen Inversen basiert auf folgendem Zusammenhang ("Vielfachsummensatz", "Lemma von Bézout", "Lemma von Bachet"): Vielfachsummensatz: Für je zwei natürliche Zahlen a und b gibt es ganze Zahlen x und y mit ggT(a,b)=x*a+y*b. Beispiele: a = 3; b = 4: ggT(3, 4) = 1 = (-1)*3 + 1*4 a = 6; b = 9: ggT(6, 9) = 3 = (-1)*6 + 1 * 9 a = 41; b = 192: ggT(41, 192) = 1 = 89*41 + (-19)*192

50 50 Erweiterter euklidischer Algorithmus (1) 884 = 2* → 244 = *320 = (1* *320) - 2*(1* *884) = 1* *320 (2) 320 = 1* → 76 = *244 = (0* *320) - 1*(1* *320)) = 3* *884 (3) 244 = 3* → 16 = *76 = (1* *320) - 3*(3* *884) = 4* *320 (4) 76 = 4* → 12 = *16 = (3* *884) - 4*(4* *320) = 47* *884 (5) 16 = 1* → 4 = *12 = (4* *320) - 1*(47* *884) = 21* *320 (6) 12 = 3*4 + 0 Gegeben: a = 884; b = 320 Gesucht: ggT(a, b) = x*a + y*b Ergebnis: ggT(884, 320) = 4 = 21*884 + (- 58)*320

51 51 Implementierung Aufgabe: Teste die Implementierung des erweiterten Euklidischen Algorithmus.. def erweiterterEuklidischerAlgorithmus(a, b): aalt = a amitte = b xalt = 1 xmitte = 0 yalt = 0 ymitte = 1 while amitte != 0: q = aalt // amitte aneu = aalt - q * amitte xneu = xalt - xmitte * q yneu = yalt - ymitte * q xalt = xmitte xmitte = xneu yalt = ymitte ymitte = yneu aalt = amitte amitte = aneu print(amitte, '=', xmitte, '*', a, '+', ymitte, '*', b) return (aalt, xalt, yalt)

52 52 Bestimmung des modularen Inversen Mit Hilfe der Ausgaben des erweiterten euklidischen Algorithmus lässt sich das modulare Inverse bestimmen: Beispiel 1: Gesucht wird das modulare Inverse von a = 41 bzgl. m = 192. Python liefert: >>> erweiterterEuklidischerAlgorithmus(41, 192) (1, 89, -19) Umformungen: 1 = 89*41 + (-19)* (-19)*192 = 89*41 [1 - (-19)*192]% 192 = [89*41]%192 [1 + 19*192]% 192 = [89*41]%192 1 = [89*41]%192 Ergebnis: b = 89

53 53 Bestimmung des modularen Inversen Mit Hilfe der Ausgaben des erweiterten euklidischen Algorithmus lässt sich das modulare Inverse bestimmen: Beispiel 2: Gesucht wird das modulare Inverse von a = 17 bzgl. m = 192. Python liefert: >>> erweiterterEuklidischerAlgorithmus(17, 192) (1, -79, 7) Umformungen: 1 = (-79)*17 + 7* *192 = (-79)* * *17 = ( )* *192 = 113*17 [1 + 10*192]%192 = [113*17]%192 1 = [113*17]%192 Ergebnis: b = 113

54 54 Aufgabe Beispiel 3: Gesucht wird das modulare Inverse von a = 7 bzgl. m = 30. Python liefert: >>> erweiterterEuklidischerAlgorithmus(, ) Umformungen: Ergebnis: b =

55 55 Bestimmung des modularen Inversen Mit Hilfe der Ausgaben des erweiterten euklidischen Algorithmus lässt sich das modulare Inverse bestimmen. def modInv(a, m): (ggt, x, y) = erweiterterEuklidischerAlgorithmus(a, m) if ggt > 1: return -1 else: if x < 0: x = x + m return x Teste die Implementierung insbesondere für große Zahlen: d = 49 m = modInv(d, m) Welche Konsequenzen ergeben sich hieraus für die Sicherheit des Chiffrierverfahrens mit modularer Multiplikation?

56 56 Sicherheit (e, n) f(x, (e,n)) = [x*e]%n (?, n) ??? A(lice) Klartext f*(y, (d,n)) = [y*d]%n öffentl. Schlüssel von B(ob) ??? Klartext y0, y1, y2,... Geheimtext Verschlüsselungsfunktion Entschlüsselungsfunktion ??? Codierung ??? Codierung B(ob) pivat. Schlüssel von B(ob) Mr(s) X Schlüsselerzeugung: Wähle n größer als die maximale Codezahl. Wähle e mit e

57 57 Teil 5 Verschlüsselung mit modularer Potenz

58 58 Verschlüsseln d. modulares Rechnen modulares Addieren Verschlüsselung mit öffentl. Schlüssel (e, n) x → [x * e]%n y → [y * d]%n modulares Multiplizieren Entschlüsselung mit privat. Schlüssel (d, n) Verschlüsselung mit öffentl. Schlüssel (e, n) x → [x + e]%n y → [y + d]%n Entschlüsselung mit privat. Schlüssel (d, n) Verschlüsselung mit öffentl. Schlüssel (e, n) x → [x ** e]%n y → [z ** d]%n Entschlüsselung mit privat. Schlüssel (d, n) modulares Potenzieren

59 59 Verschlüsseln d. modulares Potenzieren Verschlüsselung: öffentlicher Schlüssel (e, n) = (13, 77) Entschlüsselung: privater Schlüssel (d, n) = (37, 77) (01 ** 37) % 77 = 01 (61 ** 37) % 77 = (52 ** 37) % 77 = 24 01,61,...,...,...,...,52 01,19,20,05,18,09,24 ' ' → 00 'A' → 'Z' → 26 01,19,20,05,18,09,24 A,S,T,E,R,I,X ' ' → 00 'A' → 'Z' → 26 A,S,T,E,R,I,X 01,19,20,05,18,09,24 (01 ** 13) % 77 = 01 (19 ** 13) % 77 = (24 ** 13) % 77 = 52 01,19,20,05,18,09,24 01,61,...,...,...,...,52 Codierung: Umwandlung von Zeichen in Zahlen Decodierung: Umwandlung von Zahlen in Zeichen

60 60 Verschlüsseln d. modulares Potenzieren Verschlüsselung: öffentlicher Schlüssel (e, n) = (13, 77) Entschlüsselung: privater Schlüssel (d, n) = (37, 77) (01 ** 37) % 77 = 01 (61 ** 37) % 77 = (52 ** 37) % 77 = 24 01,61,...,...,...,...,52 01,19,20,05,18,09,24 (01 ** 13) % 77 = 01 (19 ** 13) % 77 = (24 ** 13) % 77 = 52 01,19,20,05,18,09,24 01,61,...,...,...,...,52 Aufgabe: Führe die erforderlichen Berechnungen selbst durch. >>> 52 ** >>> % 77 24

61 61 Schwierigkeiten beim Potenzieren Aufgabe: Führe das Verfahren mit modularer Potenz auch mit folgenden Daten durch. Welche Schwierigkeit tritt dabei auf? (a) Quelltext: ASTERIX Codierung: wie oben Blocklänge: 3 öffentlicher Schlüssel: ( , ) privater Schlüssel: (377911, ) (b) Quelltext: ASTERIX Codierung: wie oben Blocklänge: 4 öffentlicher Schlüssel: ( , ) privater Schlüssel: ( , )

62 62 Schwierigkeiten beim Potenzieren Beim Rechnen mit Potenzen erhält man große Zahlen: >>> 24 ** >>> % >>> 52 ** >>> % Wenn die Ausgangszahlen jetzt ebenfalls groß sind, dann muss das Ausführsystem riesige Zahlen verwalten. Python liefert bei solch großen Zahlen erst einmal keine Ergebnisse. >>> ** ???

63 63 Schnelles Potenzieren 33·3·3·3·3·3·3·3·3·3·3·3·3·3·3· 9·99·99·99·9··· 81· · · 6561· So … oder so?

64 64 Schnelles Potenzieren Darstellung in Tabellenform: 33·3·3·3·3·3·3·3·3·3·3·3· 9·99·99·93··· 81· · ·3 6561· xypot *3 = *81 = *6561 =

65 65 Schnelles modulares Potenzieren Darstellung in Tabellenform: 33·3·3·3·3·3·3·3·3·3·3·3· 4·44·44·43··· 1·1·1·3 1· 3 3 %5 xypot [1*3]%5 = 3 [3*3]%5 = 46 [4*4]%5 = 13 12[3*1]%5 = 3 [1*1]%5 = 11 10[3*1]%5 = 3

66 66 Modulares Potenzieren Bei modularen Potenzen kann man zuerst die Potenz berechnen und anschließend den modularen Rest. [3 * 3 * 3 * 3 * 3 * 3]% 5 = [729]%5 = 4 Günstiger ist es, die Modulbildung aber nach jedem Rechenschritt durchzuführen. [3 * 3 * 3 * 3 * 3 * 3]% 5 = [[[[[3 * 3]%5 * 3]%5 * 3]%5 * 3]%5 * 3]%5 = [[[[ 4 * 3]%5 * 3]%5 * 3]%5 * 3]%5 = [[[ 2 * 3]%5 * 3]%5 * 3]%5 = [[ 1 * 3]%5 * 3]%5 = [ 3 * 3]%5 = 4

67 67 Schnelles modulares Potenzieren xypot [1*3]%5 = 3 [3*3]%5 = 46 [4*4]%5 = 13 12[3*1]%5 = 3 [1*1]%5 = 11 10[3*1]%5 = 3

68 68 Schnelles modulares Potenzieren def modpot(x, y, m): pot = 1 while y > 0: if y % 2 == 1: pot = (pot * x) % m y = y - 1 else: x = (x * x) % m y = y // 2 return pot Aufgabe: >>> modpot(11920, , )

69 69 Durchführung mit Python Aufgabe: Lade die Datei chiffriersystemModularePotenz.py (siehe inf-schule) herunter. Diese Datei enthält eine ganze Reihe von Funktionen zur Implementierung des RSA-Verfahrens. Mit den Funktionen der Implementierung kannst du jetzt das RSA-Verfahren durchspielen. Probiere das mit selbst gewählten Daten aus. Zur Kontrolle: Vergleiche die erzielten Ergebnisse mit denen, die CrypTool (mit passenden Einstellungen) liefert.

70 70 Durchführung mit CrypTool

71 71 Erzeugung der Schlüssel Vorbereitung: Wähle zwei verschiedene Primzahlen p und q. öffentlicher Schlüssel: Berechne n = p*q. Berechne φ(n) = (p-1)*(q-1). Wähle eine Zahl e mit 1 < e < φ(n), die teilerfremd zu φ(n) ist. Der öffentliche Schlüssel ist (e, n). ("Vernichte p, q, φ(n).") privater Schlüssel: Berechne d so, dass [e*d]%φ(n) = 1 ist. Der private Schlüssel ist (d, n). Beispiel: p = 7; q = 11 n = 77 φ(n) = 60 z. B. e = 13 (13, 77) d = 37 (37, 77)

72 72 Korrektheit des RSA-Verfahren Korrektheit: Die Entschlüsselung macht die Verschlüsselung rückgängig: x → [x e ]%n → [([x e ]%n) d ]%n = [x (e*d) ]%n = [x]%n = x Es muss hierzu folgende Schlüsseleigenschaft erfüllt sein: [x (e*d) ]%n = x für alle x < n (e, n) f(x, (e,n)) = [x e ]%n (d, n) x0, x1, x2,... A(lice) Klartext f*(y, (d,n)) = [y d ]%n öffentl. Schlüssel von B(ob) x0, x1, x2,... Klartext y0, y1, y2,... Geheimtext RSA-Verschlüsselungsfunktion RSA- Entschlüsselungsfunktion "HALLO..." Codierung "HALLO..." Codierung B(ob) privat. Schlüssel von B(ob) RSA-Schlüsselerzeugung: Wähle zwei verschiedene Primzahlen p und q. Berechne n = p  q und  (n) = (p-1)  (q-1). Wähle e mit 1 < e <  (n) und ggT(e,  (n)) = 1. Bestimme d mit [c  d]%  (n) = 1.

73 73 Korrektheit des RSA-Verfahren Beh.: [x (e * d) ]%n = x für alle x < n Begr.: Schritt 1: Es gilt n = p*q mit zwei verschiedenen Primzahlen p und q. Wir zeigen: [x (e*d) ]%p = [x]%p und [x (e*d) ]%q = [x]%q für alle Zahlen x < n Es reicht, den Nachweise für eine der beiden Primzahlen p und q zu führen. Der Nachweis für die andere Primzahl verläuft dann völlig analog. Wir betrachten im Folgenden die Primzahl p. Fall 1: p und x sind nicht teilerfremd. Da p eine Primzahl ist, muss in diesem Fall p ein Teiler von x sein. Die Primzahl p muss dann auch ein Teiler der Potenz x (e*d) sein. Es folgt: [x]%p = 0 und [x (e*d) ]% p = 0 Also: [x (e*d) ]%p = [x]%p Fall 2: p und x sind teilerfremd. Nach dem kleinen Fermatschen Satz git dann: [x (p-1) ]%p = 1 Nach der Konstruktion der Schlüssel gilt: [e*d]%φ(n) = 1 Da φ(n) = (p-1)*(q-1), gibt es also eine Zahl a mit e*d = a*(p-1)*(q-1) Satz (Kleiner Fermatscher Satz): Sei p eine Primzahl und a eine natürliche Zahl, die kein Vielfaches von p ist. Dann gilt: [a (p-1) ]%p = 1

74 74 Korrektheit des RSA-Verfahren... Jetzt können wir folgende Umformungen vornehmen: [x (e*d) ]%p = [x (a*(p-1)*(q-1)+1) ]%p = [x (a*(p-1)*(q-1)) *x]%p = [x (a*(p-1)*(q-1)) ]%p * [x]%p = [([x (p-1) ]%p) (a*(q-1)) ]%p * [x]%p = [1 (a*(q-1)) ]%p * [x]%p = 1 * [x]%p = [x]%p Damit ist die Behauptung von Schritt 1 gezeigt. Schritt 2: Aus [x (e*d) ]%p = [x]%p und [x (e*d) ]%q = [x]%q (für alle Zahlen x < n) können wir jetzt (mit dem Satz über modulare Gleichheit bzgl. Primzahlen) schließen: [x (e*d) ]%(p*q) = [x]%(p*q) Wegen n = p*q und x < n gilt dann: [x (e*d) ]%n = x

75 75 Sicherheit Sicherheit: Die Sicherheit des RSA-Verfahrens hängt davon ab, ob man aus dem öffentlichen Schlüssel (e, n) den privaten Schlüssel (d, n) (effizient) bestimmen kann. (e, n) f(x, (e,n)) = [x e ]%n (?, n) ??? A(lice) Klartext f*(y, (d,n)) = [y d ]%n ??? Klartext y0, y1, y2,... Geheimtext RSA-Verschlüsselungsfunktion RSA- Entschlüsselungsfunktion ??? Codierung ??? Codierung RSA-Schlüsselerzeugung: Wähle zwei verschiedene Primzahlen p und q. Berechne n = p  q und  (n) = (p-1)  (q-1). Wähle e mit 1 < e <  (n) und ggT(e,  (n)) = 1. Bestimme d mit [c  d]%  (n) = 1. B(ob) Mr(s) X öffentl. Schlüssel von B(ob) privat. Schlüssel von B(ob)

76 76 Geheimcodes knacken Codierung: Umwandlung von Zeichen in Zahlen Verschlüsselung: öffentlicher Schlüssel (e, n) = (19, 65) Entschlüsselung: privater Schlüssel (d, n) = (...,...) Decodierung: Umwandlung von Zahlen in Zeichen 48, 9, 60, 38, 60, 0, 58, 47, 31, 60, 59, 59, 60, 0, 1, 31, 59, 0, 58, 1, 38, 38, 9, 60, 14 ' ' → 00 'A' → 'Z' → 26

77 77 Geheimcodes knacken Codierung: Umwandlung von Zeichen in Zahlen Verschlüsselung: öffentlicher Schlüssel (e, n) = (113, 6887) Entschlüsselung: privater Schlüssel (d, n) = (...,...) Decodierung: Umwandlung von Zahlen in Zeichen 6613, 5456, 1378, 2773, 1646, 5581, 4072 ' ' → 00 'A' → 'Z' → 26

78 78 Geheimcodes knacken öffentlicher Schlüssel (e, n) = ( , ) privater Schlüssel (d, n) = (...,...) Codierung: Umwandlung von Zahlen in Zeichen , ' ' → 00 'A' → 'Z' → 26

79 79 Beispiel (Aufgabe): n = 65 -> p = 5 und q = 13 Aus den beiden Primzahlen p und q kann Mr(s). X die Zahl φ(n) = (p-1) * (q-1) berechnen. Beispiel (Aufgabe 1): p = 5 und q = 13 -> φ(n) = 48 Mr(s). X weiß zudem, dass die Zahl d modulares Inverses von e bzgl. φ(n) ist. Mit dem erweiterten euklidischen Algorithmus kann Mr(s). X diese Zahl d bestimmen. Beispiel (Aufgabe 1): e = 19 und φ(n) = 48: [19*d]%48 = 1 -> d = 43 Mr(s). X kennt jetzt den privaten Schlüssel und kann den Geheimtext entschlüsseln. Angriff auf das RSA-Verfahren (e, n) f(x, (e,n)) = [x e ]%n (?, n) ??? A(lice) Klartext f*(y, (d,n)) = [y d ]%n ??? Klartext y0, y1, y2,... Geheimtext RSA-Verschlüsselungsfunktion RSA- Entschlüsselungsfunktion ??? Codierung ??? Codierung RSA-Schlüsselerzeugung: Wähle zwei verschiedene Primzahlen p und q. Berechne n = p  q und  (n) = (p-1)  (q-1). Wähle e mit 1 < e <  (n) und ggT(e,  (n)) = 1. Bestimme d mit [c  d]%  (n) = 1. B(ob) öffentl. Schlüssel von B(ob) privat. Schlüssel von B(ob)

80 80 Sicherheit RSA-Verfahren (e, n) f(x, (e,n)) = [x e ]%n (?, n) ??? A(lice) Klartext f*(y, (d,n)) = [y d ]%n ??? Klartext y0, y1, y2,... Geheimtext RSA-Verschlüsselungsfunktion RSA- Entschlüsselungsfunktion ??? Codierung ??? Codierung RSA-Schlüsselerzeugung: Wähle zwei verschiedene Primzahlen p und q. Berechne n = p  q und  (n) = (p-1)  (q-1). Wähle e mit 1 < e <  (n) und ggT(e,  (n)) = 1. Bestimme d mit [c  d]%  (n) = 1. B(ob) öffentl. Schlüssel von B(ob) pivat. Schlüssel von B(ob) Sicherheit: Die Sicherheit des RSA-Verfahrens hängt davon ab, ob man die Zahl n in vertretbarer Zeit in ihre Primfaktoren p und q zerlegen kann. Bis heute gibt es keine schnellen Algorithmen, um eine Zahl in ihre Primfaktoren zu zerlegen. Das RSA-Verfahren ist bei groß gewählten Primzahlen recht sicher, da man aus dem öffentlichen Schlüssel den privaten Schlüssel bisher nicht in angemessener Zeit bestimmen kann.

81 81 Teil 6 Primzahlalgorithmen

82 82 Primzahltest Zur Durchführung des RSA-Verfahrens benötigt man große Primzahlen. Man wählt heute Primzahlen, die mit mindestens 2048 Bit dargestellt werden. Das sind Zahlen in der Größenordnung , also Zahlen mit mehr als 600 Dezimalstellen. >>> 2** >>> len(str(2**2048)) 617 Zur Bestimmung großer Primzahlen geht man wie folgt vor. Man erzeugt eine Zufallszahl im gewünschten Größenbereich und testet, ob es sich um eine Primzahl handelt. Hierzu benötigt man geeignete Primzahltests. Da es sehr viele Primzahlen im gewünschten Bereich gibt, muss man in der Regel nicht allzu viele Zahlen testen.

83 83 Primzahlen Primzahlen sind natürliche Zahlen, die nur durch 1 und sich selbst ohne Rest teilbar sind. Beispiele: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,... Aufgabe: Aus der Primzahleigenschaft ergibt sich direkt ein einfacher Algorithmus, mit dem man bei einer natürlichen Zahl n überprüfen kann, ob es sich um eine Primzahl handelt. (a) Formuliere den Algorithmus in Struktogrammform. (b) Implementiere und teste den Algorithmus. (c) Entwickle Möglichkeiten zur Verbesserungen des einfachen Algorithmus.

84 84 Ein einfaches Testverfahren def primzahl(n): if n <= 2: if n < 2: prim = False else: prim = True else: if n % 2 == 0: faktorgefunden = True else: faktorgefunden = False t = 3 while t*t <= n and not faktorgefunden: if n % t == 0: faktorgefunden = True else: t = t + 2 prim = not faktorgefunden return prim

85 85 Ein einfaches Testverfahren primzahlen = [ 11, 101, 1009, 10007, , , , , , , , , , , , , , , , , ,...] def primzahl(n):... from time import * for p in primzahlen: t1 = clock() ergebnis = primzahl(p) t2 = clock() t = t2 - t1 print("Primzahl: ", p, "Rechenzeit: ", t)

86 86 Laufzeitverhalten >>> Primzahl: 11 Rechenzeit: e-06 Primzahl: 101 Rechenzeit: e-06 Primzahl: 1009 Rechenzeit: e-05 Primzahl: Rechenzeit: e-05 Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Aufgabe: Schätze ab, wie lange eine Überprüfung einer 600-stelligen Primzahl in etwa dauert.

87 87 Probabilistische Testverfahren In der Praxis benutzt man heute oft sogenannte probabilistische Testverfahren, da sie sehr effizient arbeiten. Probabilistischen Testverfahren funktionieren nach dem folgenden Prinzip: Bei Übergabe einer natürlichen Zahl n erhält man als Rückgabe entweder "n ist keine Primzahl" oder "n ist wahrscheinlich eine Primzahl". Diese Testverfahren liefern also keine absolute Gewissheit, wenn sie das Ergebnis "n ist wahrscheinlich eine Primzahl" produzieren. Die übergebene Zahl n kann mit einer bestimmten Wahrscheinlichkeit auch keine Primzahl sein. Allerdings ist diese Wahrscheinlichkeit sehr gering, so dass man die Unsicherheit oft in Kauf nimmt. Eines dieser probabilistischer Testverfahren ist das Miller-Rabin-Verfahren, das im Folgenden getestet werden soll. Beachte, dass die Wiederholungszahl 20 (s.u.) die Fehlerwahrscheinlichkeit beeinflusst. Setzt man diese Wiederholungszahl auf einen größeren Wert, so nimmt die Fehlerwahrscheinlichkeit ab.

88 88 Miller-Rabin-Test import random def miller_rabin_pass(a, n): d = n - 1 s = 0 while d % 2 == 0: d = d >> 1 s = s + 1 a_to_power = pow(a, d, n) if a_to_power == 1: return True for i in range(s-1): if a_to_power == n - 1: return True a_to_power = (a_to_power * a_to_power) % n return a_to_power == n - 1 def miller_rabin_test(n): for repeat in range(20): a = 0 while a == 0: a = random.randrange(n) if not miller_rabin_pass(a, n): return False return True

89 89 Laufzeitverhalten >>> Primzahl: 11 Rechenzeit: Primzahl: 101 Rechenzeit: Primzahl: 1009 Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit: Primzahl: Rechenzeit:

90 90 Primfaktorzerlegung 225 ** 13 * 260 Eine der wichtigsten Eigenschaften von Primzahlen ist, dass sie als Bausteine der natürlichen Zahlen angesehen werden können. Satz: Jede natürliche Zahl lässt sich als Produkt von Primzahlen schreiben. Diese Darstellung ist bis auf die Reihenfolge der Faktoren eindeutig. Beispiel: 260 = 2*2*5*13 = 22*5*13 Man nennt die Primzahlen, die in einer Produktdarstellung einer gegebenen Zahl vorkommen, auch Primfaktoren der Zahl. Das Faktorisierungsproblem besteht darin, eine vorgegebene Zahl in ein Produkt aus Primfaktoren zu zerlegen.

91 91 Aufgabe (a) Bei kleineren Zahlen kann man eine Primfaktorzerlegung oft direkt angeben. Bestimme eine Primfaktorzerlegung von n = 48 und n = 100. (b) Bei größeren Zahlen sollte man systematisch vorgehen, um die Primfaktoren zu bestimmen. Bestimme eine Primfaktorzerlegung von n = 221 und n = 585. (c) Entwickle zunächst einen Algorithmus zur Primfaktorzerlegung. Beschreibe in einem ersten Schritt in Worten das Verfahren, das du zur Primfaktorzerlegung von Zahlen benutzt. Beschreibe das Verfahren anschließend mit einem Struktogramm. Entwickle dann ein Programm zur Primfaktordarstellung. Hinweis: In Python bietet es sich an, eine Funktion primfaktoren(n) zu erstellen, die die Liste der Primfaktoren zurückgibt.

92 92 Ein einfaches Faktorisierungsverfahren Aufgabe: Bestimme mit (einer geeigneten Implementierung) der Funktion primfaktoren(n) die Primfaktorzerlegung der beiden Zahlen und Was stellst du fest? Stelle eine Vermutung auf, warum es hier zu einem unterschiedlichen Laufzeitverhalten kommt. # Übergabe: n = 51 # Initialisierung faktoren = [] {faktoren -> []} z = n {z -> 51} # Probedivisionen z % 2 -> 1 z % 3 -> 0 # Aktualisierung p = z {p -> 3} faktoren = faktoren + [p] {faktoren -> [3]} z = z // p {z -> 17} # Probedivisionen z % 2 -> 1 z % 3 -> 2 z % 4 -> 1 z % 5 -> 2 # Aktualisierung p = z {p -> 17} faktoren = faktoren + [p] {faktoren -> [3, 17]} z = z // p {z -> 1} # Rückgabe: [3, 17] ALGORITHMUS primfaktoren(n): initialisiere die Liste faktoren: faktoren = [] initialisiere die Hilfsvariable z: z = n SOLANGE z > 1: bestimme den kleinsten Primfaktor p von z mit Probedivisionen füge p in die Liste faktoren ein z = z // p Rückgabe: faktoren

93 93 Laufzeitmessungen Hinweis: Um Gesetzmäßigkeiten herauszufinden, sollte man systematisch vorgehen. Aufgabe: Führe die Messungen durch. Kannst du anhand der Zahlen erste Zusammenhänge erkennen? Kannst du Prognosen erstellen, wie lange man wohl bis zum nächsten Ergebnis warten muss? testzahlen = [ 11, 101, 1009, 10007, , , , , , , , , , , , , , , , ,...] from faktorisierung import primfaktoren from time import * testzahlen = [...] for z in testzahlen: t1 = clock() ergebnis = primfaktoren(z) t2 = clock() t = t2 - t1 print("Zahl: ", z) print("Primfaktoren:", ergebnis) print("Rechenzeit: ", t) print()

94 94 Zusammenhänge und Prognosen Gesetzmäßigkeit: Wenn man die Anzahl der Stellen der Ausgangszahl um 2 erhöht, dann erhöht sich die Laufzeit um den Faktor 10. Jede zusätzliche Stelle bei der Ausgangszahl führt also dazu, dass die Laufzeit mit dem Faktor √10 multipliziert wird. Es handelt sich hier um ein exponentielles Wachstumsverhalten, das man mathematisch mit einer Exponentialfunktion beschreiben kann: Wenn k die Anzahl der Stellen der Ausgangszahl angibt, dann erhält man eine Laufzeit vom Typ L(k) = c*(√10) k mit einer Konstanten c. Prognose: Wenn die Zahl 100 Stellen haben soll, also 88 Stellen mehr als eine 12-stellige Zahl, so benötigt man nach der gefundenen Gesetzmäßigkeit mal so lange wie bei der 12-stelligen Zahl - also etwa Sekunden.... Zahl: Primfaktoren: [ ] Rechenzeit: Zahl: Primfaktoren: [ ] Rechenzeit: Zahl: Primfaktoren: [ ] Rechenzeit: Zahl: Primfaktoren: [ ] Rechenzeit: Zahl: Primfaktoren: [ ] Rechenzeit:

95 95 Fazit Algorithmen spielen bei der Entwicklung von Chiffriersystemen eine große Rolle. Im Fall des RSA-Verfahrens benötigt man einerseits gute Algorithmen, um das Verfahren überhaupt effizient durchführen zu können (z. B. schnell ein modulares Inverses bestimmen; schnell eine modulare Potenz bestimmen). Andererseits ist das Verfahren so angelegt, dass bestimmte Operation mit den bisher bekannten Algorithmen mit vertretbarem Rechenaufwand nicht durchgeführt werden können.

96 96 Lehrplan - Leistungsfach Ziel ist es, das RSA- Verfahren als eines der klassischen asymmetrischen Verschlüsselungs- verfahren genauer zu untersuchen, um die Funktionsweise dieses Verfahrens zu verstehen. Die Vorgehensweise folgt einem Vorschlag von Witten und Schulz, der in den folgenden Artikeln beschrieben wird: H. Witten, R.-H. Schulz: RSA & Co. in der Schule, Teil1. LOG IN 140 S. 45 ff. H. Witten, R.-H. Schulz: RSA & Co. in der Schule, Teil2. LOG IN 143 S. 50 ff. Lehrplan für das Leistungsfach

97 97 Literaturhinweise Folgende Materialien wurden hier benutzt: H. Witten, R.-H. Schulz: RSA & Co. in der Schule, Teil1. LOG IN 140 S. 45 ff H. Witten, R.-H. Schulz: RSA & Co. in der Schule, Teil2. LOG IN 143 S. 50 ff K. Merkert:


Herunterladen ppt "Das RSA-Verfahren Klaus Becker 2014. 2 Das RSA-Verfahren An: Von: Hallo Bob!"

Ähnliche Präsentationen


Google-Anzeigen