Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Funktionale Programmierung

Ähnliche Präsentationen


Präsentation zum Thema: "Funktionale Programmierung"—  Präsentation transkript:

1 Funktionale Programmierung
Klaus Becker 2007

2 Programmieren mit Funktionen
Mit Funktionen kann man programmieren. Die Programme bestehen aus Funktionsdeklarationen. Funktionsdeklarationen werden mit Hilfe von Funktionskomposition, Fallunterscheidungen und Rekursion aufgebaut. ... Zielsetzung: Einblick in die funktionale Programmierung gewinnen Grundideen verstehen Grundkonzepte kennen lernen Relevanz anhand von Miniprojekten erkennen

3 Von der Registermaschine zur funktionalen Abstraktion
Teil 1 Von der Registermaschine zur funktionalen Abstraktion

4 Registermaschine Eine Registermaschine bearbeitet beliebig eingebbare Daten nach einem fest vorgegebenen Programm. Daten Programm 1: 5 2: 3 3: 0 4: 0 5: 0 .. > 1 JMP INC DEC TST JMP HLT > x INC i Erhöhe Register i um 1. Gehe zu Zeile x+1. > x DEC i Erniedrige Register i um 1. Gehe zu Zeile x+1. > x JMP i Gehe zu Zeile i. Wenn Register i ungleich 0 ist, dann gehe zu Zeile x+1, sonst zu Zeile x+2. > x TST i > x HLT Beende die Bearbeitung.

5 Aufgabe Was leistet das unten abgebildete Registermaschinenprogramm? Messen Sie die Zeit, die Sie brauchen, um das herauszufinden. 1 TST 2 2 JMP 4 3 JMP 7 4 TST 3 5 JMP 13 6 JMP 10 7 TST 3 8 JMP 19 9 HLT 10 TST 2 11 JMP HLT 13 DEC 2 14 DEC 3 15 INC 1 16 JMP 1 17 DEC 2 18 JMP DEC 3 20 JMP 7

6 Aufgabe Was leistet das unten abgebildete (Python-) Programm? Messen Sie die Zeit, die Sie brauchen, um das herauszufinden. while (R2 <> 0) and (R3 <> 0): R1 = R R2 = R R3 = R3 - 1 while R2 <> 0: R2 = R2 - 1 while R3 <> 0: R3 = R3 -1

7 Spaghetti-Code mit Sprunganweisungen
Durch die vielen Sprunganweisungen verliert man leicht den Überblick über die Ablauflogik. Wer strukturiert programmiert, verzichtet auf solche Sprunganweisungen, auch wenn die Programmiersprache sie zur Verfügung stellt. Viele Programmiersprachen stellen keine Sprunganweisungen zur Verfügung. Dann können solch schwer zu durchschauenden Programme gar nicht erst geschrieben werden. 1 TST 2 2 JMP 4 3 JMP 7 4 TST 3 5 JMP 13 6 JMP 10 7 TST 3 8 JMP 19 9 HLT 10 TST 2 11 JMP HLT 13 DEC 2 14 DEC 3 15 INC 1 16 JMP 1 17 DEC 2 18 JMP DEC 3 20 JMP 7 "Spaghetti-Code"

8 Ablaufkontrolle mit Kontrollanweisungen
An Stelle von Sprunganweisungen benutzt man Kontrollstrukturen, um die Ablauflogik strukturiert zu beschreiben. 1 TST 2 2 JMP 4 3 JMP 7 4 TST 3 5 JMP 13 6 JMP 10 7 TST 3 8 JMP 19 9 HLT 10 TST 2 11 JMP HLT 13 DEC 2 14 DEC 3 15 INC 1 16 JMP 1 17 DEC 2 18 JMP DEC 3 20 JMP 7 while (R2 <> 0) and (R3 <> 0): R1 = R R2 = R R3 = R3 - 1 while R2 <> 0: R2 = R2 - 1 while R3 <> 0: R3 = R3 -1 Ablaufbeschreibung mit Kontrollstrukturen Ablaufbeschreibung mit Sprunganweisungen

9 Aufgabe Vergleichen Sie die beiden Programme. Welche Version ist besser? def minimum(a, b): global m while (a <> 0) and (b <> 0): m = m a = a b = b - 1 def minimum(a, b): m = while (a <> 0) and (b <> 0): m = m a = a b = b return m >>> m = 0 >>> minimum(5, 7) >>> m 5 >>> minimum(5, 7) 5

10 Unterprogramm mit Seiteneffekt
Seiteneffekte Das Unterprogramm auf der linken Seite verändert den Wert einer globalen Variablen. Das Unterprogramm hat einen sog. Seiteneffekt. def minimum(a, b): global m while (a <> 0) and (b <> 0): m = m a = a b = b - 1 def minimum(a, b): m = while (a <> 0) and (b <> 0): m = m a = a b = b return m >>> m = 3 >>> minimum(5, 7) >>> m 8 >>> m = 0 >>> minimum(5, 7) >>> m 5 >>> minimum(5, 7) 5 Unterprogramm mit Seiteneffekt

11 Programme ohne Seiteneffekte
Eine Funktion soll normalerweise aus den Argumenten einen Wert berechnen und nichts anderes nebenbei tun. Von diesem Prinzip weichen Programmierer jedoch immer wieder ab, etwa indem sie in der Funktion globale Variablen verändern. Wer strukturiert programmiert, verzichtet auf Seiteneffekte. Es gibt Programmiersprachen, die keine Seiteneffekte zulassen. Die Idee dabei ist, auf Wertzuweisungen zu verzichten, so dass keine unbeabsichtigten Seiteneffekte möglich sind. def minimum(a, b): if a == 0: return a else: if b == 0: return b else: return 1 + minimum(a-1, b-1) Unterprogramm ohne Wertzuweisung

12 Zielsetzung Ziel ist es, die Grundideen funktionaler Programmierung anhand von Beispielen problemorientiert zu erarbeiten. Insbesondere soll dabei herausgearbeitet werden, dass Programmierung ohne Wertzuweisungen möglich ist.

13 Konzepte der funktionalen Programmierung
Teil 2 Konzepte der funktionalen Programmierung

14 Fallstudie: Chiffrieren
Ziel ist es, Chiffrierverfahren (die auf modularem Rechnen basieren), mit Hilfe funktionaler Programme zu beschreiben. PYLZFOWBNQCYBUVNCBLGYCHYAYBYCGMWBLCZNYHNTCZYLN VDOYH FDHVDU A B C D E F G H I J K L M N O P Q R S T U V W X Y Z D E F G H I J K L M N O P Q R S T U V W X Y Z A B C Schlüssel: D Quelltext: Geheimtext: SALVECAESAR VDOYHFDHVDU

15 Additives Chiffrierverfahren
Codierung: Code: A → 1 Blocklänge: 2 AA → 0101 AB → ZZ → 2626 AS#TE#RI#X 0119#2005#1809#24 Verschlüsselung: öffentlicher Schlüssel (d, m) = (2102, 3000) z → (z + d) % m 0119#2005#1809#24 Bed.: z < m m > maxCode 2221#1107#1010#2126 Entschlüsselung: privater Schlüssel (e, m) = (898, 3000) z → (z + e) % m 2221#1107#1010#2126 Bed.: (d + e) % m = 0 0119#2005#1809#24 Decodierung: Code: A → 1 Blocklänge: 2 AA → 0101 AB → ZZ → 2626 0119#2005#1809#24 AS#TE#RI#X

16 Additives Chiffrierverfahren
Wir betrachten zunächst das Verschlüsseln und Entschlüsseln von Zahlenfolgen mit Schlüsseln, die aus zwei Komponenten bestehen. Da Ver- und Entschlüsseln gleich funktionieren, reicht es, nur das Verschlüsseln zu betrachten. Verschlüsselung: öffentlicher Schlüssel (d, m) = (2102, 3000) z → (z + d) % m 0119#2005#1809#24 Bed.: m ist größer als die maximale Codezahl 2221#1107#1010#2126 Entschlüsselung: privater Schlüssel (e, m) = (898, 3000) z → (z + e) % m 2221#1107#1010#2126 Bed.: d + e = m 0119#2005#1809#24

17 Funktionale Modellierung
Verschlüsselung: öffentlicher Schlüssel (d, m) = (2102, 3000) z → (z + d) % m 0119#2005#1809#24 Bed.: z < m m > maxCode 2221#1107#1010#2126 Spezifikation: verschluesselnZahl 119 zahl 2221 (2102, 3000) schluessel Eingaben: zahl: die zu verschlüsselnde Zahl schluessel: Zahlenpaar bestehend aus der zu addierenden Konstante und dem Divisionsmodul Ausgabe: die berechnete verschlüsselte Zahl

18 Funktionale Modellierung
Verschlüsselung: öffentlicher Schlüssel (d, m) = (2102, 3000) z → (z + d) % m 0119#2005#1809#24 Bed.: z < m m > maxCode 2221#1107#1010#2126 Spezifikation: verschluesseln [119, 2005, 1809, 24] zahlenListe [2221, 1107, 1010, 2126] (2102, 3000) schluessel Eingaben: zahlenListe: Liste mit den zu verschlüsselnden Zahlen schluessel: Zahlenpaar bestehend aus der zu addierenden Konstante und dem Divisionsmodul Ausgabe: Liste mit den berechneten verschlüsselten Zahlen

19 Funktionales Programm
Verschlüsselung: öffentlicher Schlüssel (d, m) = (2102, 3000) z → (z + d) % m 0119#2005#1809#24 Bed.: z < m m > maxCode 2221#1107#1010#2126 Spezifikation: verschluesselnZahl 119 zahl 2221 (2102, 3000) schluessel Implementierung: def verschluesselnZahl(zahl, schluessel): return (zahl + schluessel[0]) % schluessel[1]

20 Funktionales Programm
Verschlüsselung: öffentlicher Schlüssel (d, m) = (2102, 3000) z → (z + d) % m 0119#2005#1809#24 Bed.: z < m m > maxCode 2221#1107#1010#2126 Spezifikation: verschluesseln [119, 2005, 1809, 24] zahlenListe [2221, 1107, 1010, 2126] (2102, 3000) schluessel Implementierung: def verschluesseln(zahlenListe, schluessel): if len(zahlenListe) == 0: return [] else: return [verschluesselnZahl(zahlenListe[0], schluessel)] verschluesseln(zahlenListe[1:], schluessel)

21 Datenstruktur "Tupel" Tupel sind unveränderbare Sequenzen. Man verwendet Tupel, wenn man ein Objekt repräsentieren möchte, das aus mehreren Komponenten besteht. Spezifikation: verschluesselnZahl Tupel 119 zahl 2221 (2102, 3000) schluessel Implementierung: def verschluesselnZahl(zahl, schluessel): return (zahl + schluessel[0]) % schluessel[1] Zugriff auf die Komponenten Zugriff auf die Komponenten

22 Datenstruktur "Liste" Listen sind veränderbare Sequenzen. Sie können (in Python) Objekte beliebigen Typs enthalten. Mit Listen kann man komplexere Strukturen modellieren. Spezifikation: Liste Liste verschluesseln [119, 2005, 1809, 24] zahlenListe [2221, 1107, 1010, 2126] (2102, 3000) schluessel Implementierung: Listenoperationen def verschluesseln(zahlenListe, schluessel): if len(zahlenListe) == 0: return [] else: return [verschluesselnZahl(zahlenListe[0], schluessel)] verschluesseln(zahlenListe[1:], schluessel)

23 Listenoperationen Das Python-Protokoll zeigt die Listenoperationen, die im Folgenden benötigt werden. Weitere Listenoperationen findet man in der Dokumentation. >>> zahlenListe = [] >>> zahlenListe [] >>> len(zahlenListe) >>> zahlenListe = [119, 2005, 1809, 24] [119, 2005, 1809, 24] >>> zahlenListe[0] 119 >>> zahlenListe[1:] [2005, 1809, 24] >>> [zahlenListe[0]] + zahlenListe[1:] >>> ... leere Liste Länge einer Liste Zugriff auf Listenelemente Zugriff auf eine Restliste Konkatenation von Listen

24 Aufgabe Testen Sie die im funktionalen Programm vorkommenden Listenoperationen. Variieren Sie dabei auch die vorkommenden Parameterwerte. >>> zahlenListe = [] >>> zahlenListe [] >>> len(zahlenListe) >>> zahlenListe = [119, 2005, 1809, 24] [119, 2005, 1809, 24] >>> zahlenListe[0] 119 >>> zahlenListe[1:] [2005, 1809, 24] >>> [zahlenListe[0]] + zahlenListe[1:] >>> ...

25 Rekursive Problemreduktion
Rekursive Problemreduktion: Reduziere des Problems auf ein entsprechendes, aber „verkleinertes“ Problem. Fall 1: Bearbeite eine leere Liste verschluesseln([], (2102, 3000)) → [] Rekursionsanfang: Löse das Problem direkt [] Fall 2: Bearbeite eine nicht-leere Liste verschluesseln([119, 2005, 1809, 24], (2102, 3000)) → [verschluesselnZahl(119, (2102, 3000))] + verschluesseln([2005, 1809, 24], (2102, 3000)) [2221, 1107, 1010, 2126] Rekursionsschritt: Löse ein entsprechendes Problem [2221] [1107, 1010, 2126]

26 Aufgabe Fügen Sie Ausgabeanweisungen ein und verfolgen Sie so die Auswertung der einzelnen Funktionsaufrufe. def verschluesseln(zahlenListe, schluessel): print zahlenListe, schluessel if len(zahlenListe) == 0: return [] else: return [verschluesselnZahl(zahlenListe[0], schluessel)] verschluesseln(zahlenListe[1:], schluessel)

27 Kontrollstruktur "Rekursion"
Rekursion wird in der funktionalen Programmierung als Kontrollstruktur benutzt, um wiederkehrende Berechnungen durchzuführen. def verschluesseln(zahlenListe, schluessel): if len(zahlenListe) == 0: return [] else: return [verschluesselnZahl(zahlenListe[0], schluessel)] verschluesseln(zahlenListe[1:], schluessel) verschluesseln([119, 2005, 1809, 24], (2102, 3000)) → [verschluesselnZahl(119, (2102, 3000))] + verschluesseln([2005, 1809, 24], (2102, 3000)) → [2221] verschluesseln([2005, 1809, 24], (2102, 3000)) → [2221] [verschluesselnZahl(2005, (2102, 3000))] verschluesseln([1809, 24], (2102, 3000)) → [2221] [1107] verschluesseln([1809, 24], (2102, 3000)) ...

28 Kontrollstruktur "Rekursion"
→ [2221] [1107] [verschluesselnZahl(1809, (2102, 3000))] verschluesseln([24], (2102, 3000)) → [2221] [1107] [1010] verschluesseln([24], (2102, 3000)) → [2221] [1107] [1010] [verschluesselnZahl(24, (2102, 3000))] verschluesseln([], (2102, 3000)) → [2221] [1107] [1010] [2126] verschluesseln([], (2102, 3000)) → [2221] [1107] [1010] [2126] [] → [2221, 1107, 1010, 2126]

29 Funktionskomposition
Kontrollstrukturen Funktionsdeklarationen werden in der funktionalen Programmierung mit Hilfe von - Funktionskomposition, - Fallunterscheidungen und - Rekursion aufgebaut. Diese Strukturen legen letztlich die Ablaufkontrolle fest. def verschluesseln(zahlenListe, schluessel): if len(zahlenListe) == 0: return [] else: return [verschluesselnZahl(zahlenListe[0], schluessel)] verschluesseln(zahlenListe[1:], schluessel) Fallunterscheidung Rekursion Funktionskomposition

30 Aufgabe Zur Übung rekursiver Funktionsdeklarationen sollen folgende Funktionen implementiert werden. Gehen Sie analog zur Funktion "verschluesseln" vor. Spezifikation: addieren [6, 13, 0, 5] zahlenListe [13, 20, 7, 12] 7 konstante Spezifikation: nullErsetzen [6, 0, 13, 0, 0, 5, 3] zahlenListe [6, 7, 13, 7, 7, 5, 3] 7 konstante

31 Aufgabe In der Datei "ChiffriersystemModularesAddierenRekursiv.py" finden Sie eine Implementierung des Chiffriersystems basierend auf modularer Addition, die (außer zum Testen) keine Wertzuweisungen benutzt. Analysieren Sie die Funktionsdeklarationen auch im Hinblick auf die vorkommenden Kontrollstrukturen. Verschlüsselung: öffentlicher Schlüssel (d, m) = (2102, 3000) z → (z + d) % m 0119#2005#1809#24 Bed.: z < m m > maxCode 2221#1107#1010#2126 Entschlüsselung: privater Schlüssel (e, m) = (898, 3000) z → (z + e) % m 2221#1107#1010#2126 Bed.: (d + e) % m = 0 0119#2005#1809#24

32 Aufgabe Ändern Sie die entsprechenden Funktionsdeklarationen so ab, dass man das multiplikative Chiffrierverfahren erhält. Verschlüsselung: öffentlicher Schlüssel (d, m) = (7, 30) z → (z * d) % m 01#19#20#05#18#09#24 Bed.: z < m 07#13#20#05#06#03#18 Entschlüsselung: privater Schlüssel (e, m) = (13, 30) z → (z * e) % m 07#13#20#05#06#03#18 Bed.: (d * e) % m = 1 01#19#20#05#18#09#24

33 Codeduplizierung Die Implementierungen zur Verschlüsselung mit modularer Addition und modularer Multiplikation weisen auffallende Ähnlichkeiten auf. def verschluesselnZahlAdd(zahl, schluessel): return (zahl + schluessel[0]) % schluessel[1] def verschluesselnAdd(zahlenListe, schluessel): if len(zahlenListe) == 0: return [] else: return [verschluesselnZahlAdd(zahlenListe[0], schluessel)] verschluesselnAdd(zahlenListe[1:], schluessel) def verschluesselnZahlMul(zahl, schluessel): return (zahl * schluessel[0]) % schluessel[1] def verschluesselnMul(zahlenListe, schluessel): if len(zahlenListe) == 0: return [] else: return [verschluesselnZahlMul(zahlenListe[0], schluessel)] verschluesselnMul(zahlenListe[1:], schluessel)

34 Funktionen als Eingabeobjekte
Codeduplizierung lässt sich vermeiden, wenn man Funktionen als Eingabeobjekte von Funktionen zulässt. Spezifikation: Funktion verschluesseln z → (z + d) % m verfahren [119, 2005, 1809, 24] zahlenListe [2221, 1107, 1010, 2126] (2102, 3000) schluessel Liste Tupel

35 Funktionen als Eingabeobjekte
Die Implementierung zeigt, dass man Funktionen hier wie andere Objekte auch als Parameter übergeben kann. def verschluesselnZahlAddieren(zahl, schluessel): return (zahl + schluessel[0]) % schluessel[1] def verschluesselnZahlMultiplizieren(zahl, schluessel): return (zahl * schluessel[0]) % schluessel[1] def verschluesselnZahl(verfahren, zahl, schluessel): return verfahren(zahl, schluessel) def verschluesseln(verfahren, zahlenListe, schluessel): if len(zahlenListe) == 0: return [] else: return [verschluesselnZahl(verfahren, zahlenListe[0], schluessel)] verschluesseln(verfahren, zahlenListe[1:], schluessel) def verschluesselnModularesAddieren(zahlenListe, schluessel): return verschluesseln(verschluesselnZahlAddieren, zahlenListe, schluessel) def verschluesselnModularesMultiplizieren(zahlenListe, schluessel): return verschluesseln(verschluesselnZahlMultip.., zahlenListe, schluessel)

36 Aufgabe Testen Sie die Implementierung in der Datei "ChiffriersystemModularesRechnenRekursiv.py". Erweitern Sie diese Implementierung um die Möglichkeit, Verschlüsselung auch mit modularem Potenzieren durchzuführen.

37 Funktionale Programmierung
Mit Funktionen kann man programmieren. Die Programme bestehen aus Funktionsdeklarationen. Ein Programmaufruf erfolgt mit einem funktionalen Berechnungsausdruck. Funktionsdeklaration def verschluesseln(zahlenListe, schluessel): if len(zahlenListe) == 0: return [] else: return [verschluesselnZahl(zahlenListe[0], schluessel)] verschluesseln(zahlenListe[1:], schluessel) verschluesseln([119, 2005, 1809, 24], (2102, 3000)) Berechnungsausdruck

38 Funktionale Programmierung
Funktionsdeklarationen werden mit Hilfe von - Funktionskomposition, - Fallunterscheidungen und - Rekursion aufgebaut. Funktionskomposition def verschluesselnZahl(zahl, schluessel): return (zahl + schluessel[0]) % schluessel[1] def verschluesseln(zahlenListe, schluessel): if len(zahlenListe) == 0: return [] else: return [verschluesselnZahl(zahlenListe[0], schluessel)] verschluesseln(zahlenListe[1:], schluessel) Rekursion Fallunterscheidung

39 Funktionale Programmierung
Objekte können mit Hilfe von Tupelbildung und Listen zu neuen Einheiten zusammengefasst werden. Funktionen können als Eingabeobjekte für weitere Funktionen benutzt werden. Funktion Tupel def verschluesselnZahl(verfahren, zahl, schluessel): return verfahren(zahl, schluessel) def verschluesseln(verfahren, zahlenListe, schluessel): if len(zahlenListe) == 0: return [] else: return [verschluesselnZahl(verfahren, zahlenListe[0], schluessel)] verschluesseln(verfahren, zahlenListe[1:], schluessel) Liste

40 Miniprojekte Funktionale Programmierung eignet sich sehr gut, um schnell ein System zu entwickeln und zu testen. Man konzentriert sich nur auf die "Logik" des Systems, nicht auf "schmückendes Beiwerk". Die Programme sollen dabei kurz und gut überschaubar sein. Im Folgenden soll diese Vorgehensweise anhand von drei Miniprojekten aufgezeigt werden.

41 Miniprojekt "Geometrische Abbildungen"
Ziel ist es, ein System zu entwickeln, mit dem man einfache geometrische Operationen durchführen kann.

42 Miniprojekt "Automatensimulator"
Ziel ist es, ein System zu entwickeln, mit dem man das Verhalten eines beliebigen Automaten simulieren kann. akzeptor 1 g u Ok! 1

43 Miniprojekt "Programminterpreter"
Ziel ist es, ein System zur Ausführung einfacher imperativer Programme zu entwickeln. {b: 2; u: 5} BEGIN p := 1; WHILE u > 0 DO BEGIN IF u mod 2 = 1 THEN BEGIN u := u – 1; p := p * b; END; u := u div 2; b := b* b; END END Interpreter {b: 256; u: 0; p: 32}

44 Aufgabe Wählen Sie eines der Miniprojekte aus und realisieren Sie das skizzierte System. Sie können versuchen, das System völlig selbständig zu entwickeln, oder die im Folgenden angebotenen Hilfen zu nutzen.

45 Miniprojekt: Geometrische Abbildungen
Teil 3 Miniprojekt: Geometrische Abbildungen

46 Geometrische Abbildungen
Ziel ist es, ein System zu entwickeln, mit dem man einfache geometrische Operationen durchführen kann.

47 Schritt 1: Verschiebungen
Verschiebungen können mit Hilfe von Vektoren dargestellt werden. Die Abbildung von Punkten lässt sich dann durch Addition von Vektoren realisieren. Vieleck: A(0, 0), B(40, 0), C(40, 30), D(0, 30) Verschiebung mit Vektor: 10 v = verschobenes Vieleck: A'(10, 10), B'(50, 10), C'(50, 40), D'(10, 40)

48 Listenrepräsentation
Wir repräsentieren Vektoren mit Hilfe von Listen. Ebenso stellen wir Punkte und Punktfolgen mit Hilfe von Listen dar. Vieleck: [[0, 0], [40, 0], [40, 30], [0, 30]] Verschiebung mit Vektor [10, 10]: [0, 0] + [10, 10] [10, 10] [40, 0] + [10, 10] [50, 10] [40, 30] + [10, 10] [50, 40] [0, 30] + [10, 10] [10, 40] verschobenes Vieleck: [[10, 10], [50, 10], [50, 40], [10, 40]]

49 Aufgabe Entwickeln Sie ein funktionales Programm für die Addition von Vektoren. Um das Programm flexibel benutzen zu können, sollen Vektoren beliebig viele Komponenten haben können. Spezifikation: add [60, 30, 40] v [70, 30, 70] [10, 0, 30] w

50 Aufgabe Realisieren Sie jetzt die Abbildung "Verschieben" mit Hilfe der bereits implementierten Vektoraddition. Spezifikation: verschiebenPunkt [40, 30] punkt [50, 30] [10, 10] vektor Spezifikation: verschieben [[20, 10], [40, 30], [70, 0]] vieleck [[30, 20], [50, 40], [80, 10]] [10, 10] vektor

51 Lösungsvorschlag Spezifikation: Implementierung: add [60, 30, 40] v
[70, 30, 70] [10, 0, 30] w Implementierung: def add(v, w): if len(v) == 0: if len(w) == 0: return [] else: return w else: if len(w) == 0: return v else: return [v[0] + w[0]] + add(v[1:], w[1:])

52 Lösungsvorschlag Spezifikation: Spezifikation: verschiebenPunkt
[40, 30] punkt [50, 30] [10, 10] vektor Spezifikation: verschieben [[20, 10], [40, 30], [70, 0]] vieleck [[30, 20], [50, 40], [80, 10]] [10, 10] vektor def verschiebenPunkt(punkt, vektor): return add(punkt, vektor) def verschieben(vieleck, vektor): if len(vieleck) == 0: return [] else: return [verschiebenPunkt(vieleck[0], vektor)] verschieben(vieleck[1:], vektor)

53 Test mit Turtlegrafik Testen Sie die einzelnen Funktionsdeklarationen mit Hilfe geeigneter Testfälle. Zur visuellen Kontrolle können Sie die geometrischen Objekte auch mit Hilfe von Turtlegrafik darstellen. Kopieren Sie zu diesem Zweck die Daten "xturtle.py" (von G. Lingl aus dem Buch "Python für Kids") in die Standardbibliothek von Python. Benutzen Sie die Hilfsfunktion zum Zeichnen von Vielecken (siehe "GeometrischeOperationen1.py"). Beachten Sie, dass diese Hilfsfunktion Seiteneffekte in Form von Grafiken erzeugt und damit nicht mehr rein funktional ist.

54 Test mit Turtlegrafik def zeichneVieleck(punkte): # wird nur zum Zeichnen benutzt if len(punkte) > 0: penup() setpos(punkte[0]) pendown() streckenzug = punkte[1:] + [punkte[0]] for punkt in streckenzug: goto(punkt) if __name__ == "__main__": # Test der einzelnen Funktionen import doctest doctest.testmod(verbose=True) # Visueller Test mit Turtlegrafik from xturtle import * reset() vieleck1 = [[0, 0], [40, 0], [40, 30], [0, 30]] vieleck2 = verschieben(vieleck1, [10, 10]) zeichneVieleck(vieleck1) zeichneVieleck(vieleck2)

55 Schritt 2: Streckungen Streckungen lassen sich durch Multiplikation eines Vektors mit einer Zahl realisieren. Fall1: Streckzentrum im Ursprung Streckung mit dem Faktor k: multipliziere die Koordinaten der Punkte mit dem Streckfaktor k Fall 2: Streckzentrum beliebig Verschiebe erst das Streckzentrum in den Ursprung, führe die Steckung aus und verschiebe wieder zurück an den Ausgangspunkt Beispiel: Vieleck: A(30, 0), B(70, 0), C(70, 30), D(30, 30) Streckung mit dem Streckzentrum (0, 0) und dem Streckfaktor 2: gestrecktes Vieleck: A'(60, 0), B'(140, 0), C'(140, 60), D'(60, 60)

56 Listenrepräsentation
Wir benötigen hier die Multiplikation eines Vektors mit einer Zahl. Vieleck: [[20, 0], [60, 0], [60, 30], [20, 30]] Streckung mit dem Streckzentrum [0, 0] und dem Streckfaktor 2: 2*[20, 0] [40, 0] ... gestrecktes Vieleck: [[40, 0], [120, 0], [120, 60], [40, 60]]

57 Aufgabe Entwickeln Sie geeignete Funktionen zur Durchführung von Streckungen.

58 Lösungsvorschlag def mul(k, v): if len(v) == 0: return [] else: return [k * v[0]] + mul(k, v[1:]) def streckenPunktUrsprung(punkt, faktor): return mul(faktor, punkt) def streckenUrsprung(vieleck, faktor): if len(vieleck) == 0: return [] else: return [streckenPunktUrsprung(vieleck[0], faktor)] streckenUrsprung(vieleck[1:], faktor) def strecken(vieleck, zentrum, faktor): return verschieben( streckenUrsprung( verschieben(vieleck, mul(-1, zentrum)), faktor), zentrum)

59 Schritt 3: Drehungen Drehungen lassen sich durch Multiplikation einer Matrix mit einem Vektor realisieren. Fall1: Drehzentrum im Ursprung Drehung des Punktes P(x, y) um den Winkel w: cos(w) -sin(w) x x' *  sin(w) cos(w) y y' Es gilt: x' = cos(w)*x + (- sin(w))*y y' = sin(w)*x + cos(w)*y Fall 2: Drehzentrum beliebig Verschiebe erst das Drehzentrum in den Ursprung, führe die Drehung aus und verschiebe wieder zurück an den Ausgangspunkt

60 Listenrepräsentation
Wir repräsentieren Matrizen hier ebenfalls mit Hilfe von Listen.: Vieleck: [[20, 0], [60, 0], [60, 30], [20, 30]] Matrix für eine Linksdrehung um das Drehzentrum [0, 0] und dem Drehwinkel 90°: [[0, -1], [1, 0]] [[0, -1], [1, 0]] * [20, 0]  [0, 20] ... gedrehtes Vieleck: [[0, 20], [0, 60], [-30, 60], [-30, 20]]

61 Aufgabe Entwickeln Sie geeignete Funktionen zur Durchführung von Drehungen. Bei der Implementierung mit Python müssen Sie durch "import math" die benötigten mathematischen Operationen bereitstellen. Ein Aufruf der cos-Funktion lautet hier "math.cos(x)". Das Ergebnis wird im Bogenmaß geliefert. Mit "math.radians(w)" können Sie einen Winkel im Gradmaß ins Bogenmaß umrechen. Die umgekehrte Operation führt "math.degrees(x)" aus. Weitere Informationen erhalten Sie in der mitgelieferten Dokumentation.

62 Lösungsvorschlag def skalprod(v, w): if len(v) == 0: return else: return (v[0] * w[0]) + skalprod(v[1:], w[1:]) def matrixmul(m, v): if len(m) == 0: return [] else: return [skalprod(m[0], v)] + matrixmul(m[1:], v)

63 Lösungsvorschlag def drehenPunktUrsprung(punkt, w): import math return matrixmul([ [math.cos(math.radians(w)), -math.sin(math.radians(w))], [math.sin(math.radians(w)), math.cos(math.radians(w))]], punkt) def drehenUrsprung(vieleck, w): if len(vieleck) == 0: return [] else: return [drehenPunktUrsprung(vieleck[0], w)] drehenUrsprung(vieleck[1:], w) def drehen(vieleck, zentrum, winkel): return verschieben( drehenUrsprung( verschieben(vieleck, mul(-1, zentrum)), winkel), zentrum)

64 Weitere Ideen Erweitern Sie das System um die Möglichkeit, Spiegelungen durchzuführen.

65 Miniprojekt: Automatensimulator
Teil 4 Miniprojekt: Automatensimulator

66 Miniprojekt "Automatensimulator"
Ziel ist es, ein System zu entwickeln, mit dem man das Verhalten eines beliebigen Automaten simulieren kann. akzeptor 1 g u Ok! 1

67 Schritt 1: Automatenbeschreibung
Mit Hilfe endlicher Automaten kann man formale Sprachen erkennen. Der dargestellte endliche Automat erkennt die Sprache der 0-1-Wörter mit gerader Parität (gerader Anzahl von 1en). Es handelt sich um einen sog. Akzeptor, der keine Ausgaben erzeugt. 1 g u Zustandsmenge: Z = {g, u} Eingabemenge: E = {0, 1} Anfangszustand: za = g Endzustände: zE = {g} Überführungsfunktion: : (g, 0)  g : (g, 1)  u : (u, 0)  u : (u, 1)  g

68 Aufgabe Der Automat lässt sich wie folgt mit Funktionen modellieren. Implemen-tieren Sie diese Funktionen. 1 g u Spezifikation: anfangszustandP 'g' Spezifikation: Zustandsmenge: Z = {g, u} Eingabemenge: E = {0, 1} Anfangszustand: za = g Endzustände: zE = {g} Überführungsfunktion: : (g, 0)  g : (g, 1)  u : (u, 0)  u : (u, 1)  g endzustandP 'g' z True Spezifikation: deltaP 'g' z 'g' '0' e

69 Aufgabe Modellieren und implementieren Sie noch einen weiteren Automaten (ohne Ausgabe).

70 Aufgabe Der unten abgebildete Automat zur Steuerung einer Ampel ist ein Transduktor. In jedem Zustand wird bei jeder Eingabe eine Ausgabe erzeugt. Z. B. wird im Zustand "rot" bei der Eingabe "t" (Tag) die Ausgabe "OOo" (rot an, gelb an, grün aus) erzeugt. Beschreiben Sie diesen Transduktor mit Hilfe von Funktionen.

71 Lösungsvorschlag def anfangszustandP(): return 'g'
def endzustandP(z): if (z == 'g'): return True elif (z == 'u'): return False def deltaP(z, e): if (z == 'g') and (e == '0'): return 'g' elif (z == 'u') and (e == '0'): return 'u' elif (z == 'g') and (e == '1'): return 'u' elif (z == 'u') and (e == '1'): return 'g' Zustandsmenge: Z = {g, u} Eingabemenge: E = {0, 1} Anfangszustand: za = g Endzustände: zE = {g} Überführungsfunk.: : (g, 0)  g : (g, 1)  u : (u, 0)  u : (u, 1)  g 1 g u

72 Lösungsvorschlag def anfangszustandA(): return 'ge';;
def deltaA(z, e): if (z == 'ro') and (e == 't'): return 'rg' elif (z == 'rg') and (e == 't'): return 'gr' elif (z == 'gr') and (e == 't'): return 'ge' elif (z == 'ge') and (e == 't'): return 'ro' def lambdaA(z, e): if (z == 'ro') and (e == 't'): return 'OOo' elif (z == 'rg') and (e == 't'): return 'ooO' elif (z == 'gr') and (e == 't'): return 'oOo'

73 Schritt 2: Verarbeitung v. Eingabefolgen
Es soll ein Akzeptor-System entwickelt werden, mit dem eine Folge von Eingaben verarbeiten werden kann und rückgemeldet wird, ob diese Folge in einen Endzustand überführt. 1 g u Ok!

74 Aufgabe Erweitern Sie das funktionale Programm um die spezifizierten Funktionen. Tipp: siehe nächste Folie 1 g u def anfangszustandP(): return 'g' def endzustandP(z): if (z == 'g'): return True elif (z == 'u'): return False def deltaP(z, e): if (z == 'g') and (e == '0'): return 'g' elif (z == 'u') and (e == '0'): return 'u' elif (z == 'g') and (e == '1'): return 'u' elif (z == 'u') and (e == '1'): return 'g' Spezifikation: simulatorP 'g' z 'u' ['0', '1', '0'] eListe Spezifikation: akzeptorP False ['0', '1', '0'] eListe

75 Aufgabe Tipp: Verallgemeinern Sie die unten an konkreten Beispielen gezeigten Problemreduktionen. 1 g u Fall 1: Verarbeite eine leere Eingabenliste simulartorP('g', [])  'g' Fall 2: Verarbeite eine nicht-leere Eingabenliste simulatorP('g', ['1', '0', '0'])  simulatorP('u', ['0', '0'])] u 'u'

76 Aufgabe Entwickeln Sie eine Funktion zur Realisierung eines Ampelsimulators. Spezifikation: simulatorA 'ro' z [OOo, ooO, oOo, Ooo] ['t', 't', 't', 't'] eListe

77 Lösungsvorschlag Fall 1: Verarbeite eine leere Eingabenliste
simulartorP('g', [])  'g' Fall 2: Verarbeite eine nicht-leere Eingabenliste simulatorP('g', ['1', '0', '0'])  simulatorP('u', ['0', '0'])] u 'u' def simulatorP(z, eListe): if len(eListe) == 0: return z else: return simulatorP(deltaP(z, eListe[0]), eListe[1:]) def akzeptorP(eListe): return enzustand(simulatorP(anfangszustand(), eListe))

78 Weitere Ideen Entwickeln Sie ein System, bei dem die Arbeitsweise eines Transduktors (Automat mit Ausgabe) simuliert wird.

79 Schritt 3: Automat als Eingabe
Es soll ein universelles Akzeptor-System entwickelt werden, mit dem eine Folge von Eingaben mit einem beliebig vorgegebenen Automaten verarbeiten werden kann. def anfangszustandP(): def endzustandP(z): def deltaP(z, e): Ok!

80 Aufgabe Verallgemeinern Sie das bisher entwickelte Simulator-System. Benutzen Sie die folgende Vereinbarung: Eine Automatenbeschreibung ist ein Tripel (az, ez, de) mit: - az ist eine Funktion zur Beschreibung des Anfangszustands. - ez ist eine Funktion zur Beschreibung der Endzustände. - de ist eine Überführungsfunktion, die jedem Zustand und jeder Eingabe aus einen neuen Zustand zuordnet. Spezifikation: Funktionen simulator (anfangszustandP, enzustandP, deltaP) aut 'g' z 'u' ['0', '1', '0'] eListe

81 Lösungsvorschlag def simulator(aut, z, eListe): if len(eListe) == 0: return z else: return simulator(aut, aut[2](z, eListe[0]), eListe[1:]) def akzeptor(aut, eListe): return aut[1](simulator(aut, aut[0](), eListe))

82 Weitere Ideen Entwickeln Sie ein System, bei dem die Arbeitsweise eines beliebigen Transduktors simuliert wird.

83 Miniprojekt: Programminterpreter
Teil 5 Miniprojekt: Programminterpreter

84 Miniprojekt "Programminterpreter"
Ziel ist es, ein System zur Ausführung einfacher imperativer Programme zu entwickeln. {b: 2; u: 5} BEGIN p := 1; WHILE u > 0 DO BEGIN IF u mod 2 = 1 THEN BEGIN u := u – 1; p := p * b; END; u := u div 2; b := b* b; END END Interpreter {b: 256; u: 0; p: 32}

85 Problemvereinfachung
Ausgangs-zustand {x: 2; y: 5} BEGIN z := x; x := y; y := z END Zuweisungs-programm Interpreter End- zustand {x: 5; y: 2; z: 5} Wir betrachten zunächst nur Programme, die aus "primitiven Zuweisungen" vom Typ <Var> := <Var> bestehen.

86 Funktionale Modellierung
Ausgangs-zustand {x: 2; y: 5} BEGIN z := x; x := y; y := z END Zuweisungs-programm Interpreter End- zustand {x: 5; y: 2; z: 5} Spezifikation: PrimZuwSeqAusfuehren [(':=', 'z', 'x'), (':=', 'x', 'y'), (':=', 'y', 'z')] zuweisungen [('x', 5), ('y', 2), ('z', 5)] [('x', 2), ('y', 5)] zustand

87 Schritt 1: Variablenzustände
Variablenzustände beschreiben die jeweils aktuellen Variablenbelegungen. Zur Verarbeitung einer primitiven Zuweisung wie z := x muss der Wert einer Variablen (hier x) bzgl. des aktuellen Variablenzustands ermittelt werden und der Wert einer Variablen (hier y) im Variablenzustand verändert (oder neu angelegt) werden. {x: 2; y: 5} z := x; {x: 2; y: 5; z: 2} x := y; {x: 5; y: 5; z: 2} y := z {x: 5; y: 2; z: 2}

88 Aufgabe Modellieren Sie geeignete Funktionen, mit denen der Wert einer Variablen bzgl. eines Variablenzustands ermittelt werden kann und der Wert einer Variablen im Variablenzustand verändert (oder neu angelegt) werden kann. Entwickeln Sie anschließend mit Hilfe rekursiver Problemreduktionsschemata geeignete Funktionsdeklarationen.

89 Lösungsvorschlag Spezifikation: Spezifikation: VariablenWert 'y'
bezeichner 5 [('x', 2), ('y', 5)] zustand Spezifikation: NeuerZustand 'z' bezeichner [('x', 2), ('y', 5), ('z', 2)] 2 wert [('x', 2), ('y', 5)] zustand NeuerZustand 'x' bezeichner [('x', 5), ('y', 5), ('z', 2)] 5 wert [('x', 2), ('y', 5), ('z', 2)] zustand

90 Lösungsvorschlag def VariablenWert(bezeichner, zustand): if len(zustand) == 0: return '?' else: if bezeichner == zustand[0][0]: return zustand[0][1] else: return VariablenWert(bezeichner, zustand[1:]) def NeuerZustand(bezeichner, wert, zustand): if len(zustand) == 0: return [(bezeichner, wert)] else: if bezeichner == zustand[0][0]: return [(bezeichner, wert)] + zustand[1:] else: return [zustand[0]] NeuerZustand(bezeichner, wert, zustand[1:])

91 Schritt 2: Zuweisungsinterpreter
Mit Hilfe geeigneter Funktionen sollen jetzt einzelne primitive Zuweisungen bzw. Sequenzen primitiver Zuweisungen ausgeführt werden. {x: 2; y: 5} z := x; {x: 2; y: 5; z: 2} x := y; {x: 5; y: 5; z: 2} y := z {x: 5; y: 2; z: 2}

92 Aufgabe Modellieren und implementieren Sie die hierzu erforderlichen Funktionen.

93 PrimZuwSeqAusfuehren
Lösungsvorschlag Spezifikation: PrimZuwAusfuehren (':=', 'z', 'y') zuweisung [('x', 2), ('y', 5), ('z', 2)] [('x', 2), ('y', 5)] zustand Spezifikation: PrimZuwSeqAusfuehren [(':=', 'z', 'x'), (':=', 'x', 'y'), (':=', 'y', 'z')] zuweisungen [('x', 5), ('y', 2), ('z', 5)] [('x', 2), ('y', 5)] zustand

94 Lösungsvorschlag def PrimZuwAusfuehren(zuweisung, zustand): return NeuerZustand(zuweisung[1], VariablenWert(zuweisung[2], zustand), zustand) def PrimZuwSeqAusfuehren(zuweisungen, zustand): if len(zuweisungen) == 0: return zustand else: return PrimZuwSeqAusfuehren(zuweisungen[1:], PrimZuwAusfuehren(zuweisungen[0], zustand))

95 Schritt 3: Terminterpreter
Auf der rechten Seite einer Zuweisung sollen jetzt auch beliebige Rechenterme erlaubt sein. Wir beschränken uns auf das Rechnen mit ganzen Zahlen. Als Rechenoperationen sollen daher +, -, *, / (Division ohne Rest), % (Rest bei der Division) betrachtet werden. {x: 2; y: 5} x := x-y; {x: -3; y: 5} y := x+y; {x: -3; y: 2} x := y-x {x: 5; y: 2}

96 Aufgabe Ergänzen Sie die bereits begonnene Funktionsdeklaration und verallgemeinern Sie den Zuweisungsinterpreter. Beachten Sie die hier gewählte Darstellung von Termen, z. B.: z+(x-y) wird dargestellt durch ('+', 'z', ('-', 'x', 'y')) x+1 wird dargestellt durch ('+', 'x', 1) def TermWert(term, zustand): if isinstance(term, int): return term else: if not isinstance(term, tuple): return VariablenWert(term, zustand) else: if term[0] == '+': return TermWert(term[1], zustand) TermWert(term[2], zustand) else:

97 Schritt 4: Bedingungsinterpreter
Als nächstes sollen Anweisungen mit Bedingungen (wie z. B. if (x > 0) then ...) betrachtet werden. Hierzu muss der Interpreter Bedingungen auswerten können. Der Einfachheit halber betrachten wir nur Bedingungen vom Typ <Term> <Vergleich> <Term>. Logische Verknüpfungen von Bedingungen sollen also keine Rolle spielen. Spezifikation: BooleWert ('>', 'y', ('+', 'x', 'x')) term True [('x', 2), ('y', 5)] zustand

98 Aufgabe Entwickeln Sie analog zur Auswertung von Rechentermen eine Funktion zur Auswertung von Bedingungen.

99 Schritt 5: Kontrollinterpreter
Ziel ist es, Fallunterscheidungs- und Wiederholungsanweisungen auszuführen, wie sie etwa im unten dargestellten Programm vorkommen. BEGIN p := 1; WHILE u > 0 DO BEGIN IF u mod 2 = 1 THEN BEGIN u := u – 1; p := p * b; END; u := u div 2; b := b* b; END END

100 Aufgabe Überlegen Sie sich eine Darstellung von Kontrollanweisungen (wie im Programm) mit den von Python zur Verfügung gestellten Datenstrukturen. Entwickeln Sie geeignete Funktionen zur Ausführung dieser Anweisungen. BEGIN p := 1; WHILE u > 0 DO BEGIN IF u mod 2 = 1 THEN BEGIN u := u – 1; p := p * b; END; u := u div 2; b := b* b; END END

101 Lösungsvorschlag Fallunterscheidung: ('if', (..Bedingung..), [..Then-Anweisungen..], [..Else-Anweisungen..]) Wiederholung: ('while', (..Bedingung..), [..Anweisungen..]) [ (':=', 'p', 1), ('while', ('>', 'u', 0), [ ('if', ('==', ('%', 'u', 2), 1), [ (':=', 'u', ('-', 'u', 1)), (':=', 'p', ('*', 'p', 'b')) ],[]), (':=', 'u', ('/', 'u', 2)), (':=', 'b', ('*', 'b', 'b')) ]) ] BEGIN p := 1; WHILE u > 0 DO BEGIN IF u mod 2 = 1 THEN BEGIN u := u – 1; p := p * b; END; u := u div 2; b := b* b; END END

102 Lösungsvorschlag def AnwAusfuehren(anweisung, zustand): if anweisung[0] == ':=': return NeuerZustand(anweisung[1], TermWert(anweisung[2], zustand), zustand) else: if anweisung[0] == 'if': if BooleWert(anweisung[1], zustand): return AnwSeqAusfuehren(anweisung[2], zustand) else: return AnwSeqAusfuehren(anweisung[3], zustand) else: if anweisung[0] == 'while': if BooleWert(anweisung[1], zustand): return AnwAusfuehren(anweisung, AnwSeqAusfuehren(anweisung[2], zustand)) else: return zustand

103 Lösungsvorschlag def AnwSeqAusfuehren(anweisungen, zustand): if len(anweisungen) == 0: return zustand else: return AnwSeqAusfuehren(anweisungen[1:], AnwAusfuehren(anweisungen[0], zustand))

104 Lösungsvorschlag def ProgrammAusfuehren(programm, zustand): return AnwSeqAusfuehren(programm, zustand) Beachten Sie, dass ein Programm hier immer eine Anweisungssequenz ist, auch wenn es nur aus einer Anweisung besteht.

105 Deklarative Programmierung
Teil 6 Deklarative Programmierung

106 Ein Problem - zwei Lösungen
Problem: Wie fügt man die Elemente einer Listen (die alle Zeichenketten sein sollen) zu einer einzigen Zeichenkette zusammen? Lösung: Stell eine Hilfsliste "ergebnis" wie folgt zusammen: Starte mit der einer leeren Liste. Füge Schritt für Schritt alle Elemente der Liste jeweils am Ende der Hilfsliste ein. Die am Schluss erhaltene Hilfsliste ist die gesuchte Liste. def zusammenfuegen(liste): ergebnis = '' for wort in liste: ergebnis = ergebnis + wort return ergebnis Lösung: Wenn die Liste leer ist, dann ist die leere Liste bereits das Ergebnis. Wenn die Liste nicht leer ist, dann erhält man das Ergebnis wie folgt: Man fügt das erste Element vorne an die Zeichenkette, die man erhält, wenn man alle Elemente der Restliste zusammenfügt. def zusammenfuegen(liste): if len(liste) == 0: return '' else: return liste[0] + zusammenfuegen(liste[1:]) Imperativer Ansatz: Man beschreibt Schritt für Schritt den Vorgang, wie man alle Elemente der Liste zusammenfügt. Deklarativer Ansatz: Man beschreibt, welche Eigenschaften das Ergebnis haben soll, das man beim Zusammenfügen erhält.

107 Imperative Programmierung
Imperative Programmierung besteht darin, eine (mehr oder weniger abstrakte) Maschine mit Hilfe von Anweisungen zu steuern. A.-Zustand {liste: ['HA', 'LL', 'O']} def zusammenfuegen(liste): ergebnis = '' for wort in liste: ergebnis = ergebnis + wort return ergebnis Register-maschine Anweisungen E.-Zustand {ergebnis: 'HALLO']} Ansatz: Beschreiben, wie die Ergebnisse berechnet werden sollen Zentrale Bausteine imperativer Programme sind Wertzuweisungen, die i.a. den momentanen Variablenzustand (Speicherzustand) verändern. Imperative Programmierung ist wegen der Möglichkeit, Seiteneffekte zu produzieren, recht fehleranfällig.

108 Deklarative Programmierung
Deklarative Programmierung besteht darin, den Problemkontext (Miniwelt) mit gegebenen Mitteln (hier: Funktionen) zu beschreiben. Term zusammenfuegen(['HA', 'LL', 'O']) def zusammenfuegen(liste): if len(liste) == 0: return '' else: return liste[0] + zusammenfuegen(liste[1:]) Reduktions- maschine Deklarationen Ergebnis 'HALLO' Ansatz: Beschreiben, was in der Modellwelt gelten soll Die funktionale Programmierung arbeitet ohne Speichervariablen. Variablen kommen hier nur als Funktionsvariablen zur Übergabe von Funktionsargumenten vor. Seiteneffekte sind demnach in der funktionalen Programmierung nicht möglich. Das Verhalten einer Funktion wird vollständig durch die Funktionsdeklarationen festgelegt.

109 Fazit Funktionale Programmierung erfolgt auf einem höheren Abstraktionsniveau: - keine Anweisungen an eine Maschine, - sondern Beschreibung funktionaler Zusammenhänge. Konsequenzen: - Funktionale Programme sind kurz. - Funktionale Programme sind leicht zu verstehen. - Funktionale Programmierung ist wenig fehleranfällig. - Funktionale Programmierung eignet sich zum „Prototyping“.

110 Literaturhinweise [Becker 99] K. Becker: Funktionale Programmierung. Materialien zum Lehrplan Informatik. LMZ (http://informatikag.bildung-rp.de/html/funktprog.html) [Becker 00] K. Becker: Problemlösen mit dem Computeralgebrasystem Derive - informatisch betrachtet. (http://informatikag.bildung-rp.de/html/derive.html) [Becker 04] K. Becker: Funktionale Programmierung mit Caml. (http://informatik.bildung- rp.de/fileadmin/user_upload/informatik.bildung-rp.de/Weiterbildung/pps/WB- FunktionaleProgrammierungCaml.pps) [Fischbacher 97] T. Fischbacher: Funktionale Programmierung. In: LOG IN 17 (1997) Heft 3 / 4, S [ISB 97] Staatliches Institut für Schulpädagogik und Bildungsforschung München (Hrsg.): Funktionales Programmieren in Gofer. Baustein zur Didaktik der Informatik. München, 1997. [Puhlmann 98] H. Puhlmann: Funktionales Programmieren - Eine organische Verbindung von Informatikunterricht und Mathematik. In: LOG IN 18 (1998) Heft 2, S [Schwill 93] A. Schwill: Funktionale Programmierung mit Caml. In: LOG IN 13 (1993) Heft 4, S [Wagenknecht 94] Christian Wagenknecht: Rekursion. Ein didaktischer Zugang mit Funktionen. Bonn: Dümmlers Verlag 1994. [Wolff von Gudenberg 96] J. Wolff. von Gudenberg: Algorithmen, Datenstrukturen, Funktionale Programmierung. Eine praktische Einführung mit Caml Light. Bonn: Addison-Wesley 1996.


Herunterladen ppt "Funktionale Programmierung"

Ähnliche Präsentationen


Google-Anzeigen