Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

KONTEXTFREIE GRAMMATIK Theoretische Informatik: Formale Sprachen/Automaten.

Ähnliche Präsentationen


Präsentation zum Thema: "KONTEXTFREIE GRAMMATIK Theoretische Informatik: Formale Sprachen/Automaten."—  Präsentation transkript:

1 KONTEXTFREIE GRAMMATIK Theoretische Informatik: Formale Sprachen/Automaten

2 Planung 1.Kontextfreie Grammatik & context free art 2.KFG formale Sprachen & Automaten 3.Endliche Automaten und regular expressions 4.Kellerautomaten & die Erfindung des Stack 5.Turing Maschinen & Berechenbarkeit

3 Das Theorem der Infinite Monkeys: Wenn unendlich viele Affen unendlich lange zufällig auf einer Schreibmaschine herumtippt, dann wird fast sicher irgendwann Shakespeares Hamlet dabei herauskommen.

4 Das Theorem der Infinite Monkeys: Wahrscheinlichkeit dafür, dass die ersten n Buchstaben richtig sind: 2: 20: alle: -

5 Das Programm AFFE_0.1 Mit welchen Strategien könnte man bewirken, dass ein Computer grammatikalisch wohlgeformte Texte generiert?

6 AFFE_1.0 S Af Af Hoppla! | Geh! | Autsch! | Nicht! Startsymbol Ersetzungsregeln (transitions) Terminals (Endsymbole) S S Af Hoppla!, Geh!, Autsch!, Nicht! Ableitungs- baum:

7 AFFE_1.1 S Af S N V Af Hoppla! | Geh! | Autsch! | Nicht! N Anna | Fred | Supermann | Er V lebt | isst | rennt S S Af Hoppla!, Geh!, Autsch!, Nicht! S S N N lebt, isst, rennt Ableitungs- bäume: V V Anna, Fred, Supermann, Er

8 AFFE_1.2 S Af S N V itr S N V tr N Af Hoppla! | Geh! | Autsch! | Nicht! N Anna | Fred | Supermann | Er V itr lebt | isst | rennt V tr mag | sieht | trifft Ableitungsbäume?

9 AFFE_1.3 S Af S N nom V itr S N nom V tr_akk N akk Af Hoppla! | Geh! | Autsch! | Nicht! N nom Anna | Fred | Supermann | Er N akk Anna | Fred | Supermann | Ihn V itr lebt | isst | rennt V tr_akk mag | sieht | trifft Ableitungsbäume?

10 Rekursion (0) Der Hund rennt. (1) Der schwarze Hund rennt. (2) Der schwarze böse Hund rennt. (3) Der schwarze böse grosse Hund rennt. (4)... (0) Anna rennt. (1) Anna, die Fred mag, rennt. (2)Anna, die Fred, der Supermann sieht, mag, rennt. (0) Anna rennt. (1) Anna rennt und Fred isst. (2)Anna rennt und Fred isst aber Supermann lebt.

11 AFFE_2.0 S N V itr S N V itr Konj S //hier ist die Rekursion S. //hier ist das Stoppsymbol N Anna | Fred | Supermann | Er V itr lebt | isst | rennt Konj und | aber | weil Ableitungsbäume?

12 Context-Free Art (CFA) entdecken Ressourcen (in CFA Material) – EinführungsTutorial.cfdh (deutsch) – Beispiel1(-8).cfdg (selbst experimentieren!!!) – Weitere Beispiele im CFA Applet unter Examples oder unter Help – (documentation, gallery, forum) – CFnutshell.pdf

13 AFFE_1.3 + AFFE_2.0 = AFFE_3.0 soll all diese Sätze generieren können!

14 AFFE_3.0 S N nom VP | N nom VP Konj S VP N nom V itr | N nom V tr N akk N nom Anna | Fred | Supermann | Er N akk Anna | Fred | Supermann | Ihn V itr lebt | isst | rennt | lebt V tr mag | sieht | trifft Konj und | aber | weil | denn Ableitungsbäume?

15 DIE CHOMSKY HIERARCHIE Theoretische Informatik: Formale Sprachen/Automaten

16 Überblick 1.Contextfree Art Basar 2.Übung zum kontextfreien Krähen (a – c) 3.Abschluss der Exkursion in die Linguistik 4.KFGs und Formale Sprachen – Gesamtüberblick – Einordnung und Abgrenzung von KFGs – Üben

17 Kontextfreie Grammatiken Aus einem endlichen Vokabular können mit einer KFG (durch Rekursion) eine potentiell unendliche Anzahl grammatischer Sätze gebildet werden (dieses unendlich ist übrigens kleiner als das mit der Affentaktik erzielte) Wenn wir viel Aufwand in ein grosses Vokabular und komplizierte Produktionsregeln stecken (für die ganzen Kongruenzen) könnten wir so die Syntax der Deutschen Sprache erfassen?

18 Sind natürliche Sprachen kontextfrei? Es gab jahrzehntelange Diskussionen über die Frage, ob KFGs im Prinzip für natürliche Sprachen mächtig genug sind Die Frage konnte erst 1985 endgültig (negativ) beantwortet werden. Zwei Sprachen waren gefunden worden, die nachweisbar den Rahmen von KFGs sprengen: Zürichdeutsch und Bambara P.S: Bambara ist eine Mande-Sprache, die in Mali in Westafrika gesprochen wird. Sie zählt gemeinsam mit Dioula und Malinke zum Dialektkontinuum des Manding. Quelle: Wikipedia

19 * * erlauben Zentraleinbettungen Jan sagt, dass wir Hans ein Haus anstreichen helfen Die meisten Sprachen (z.B. Standard-Deutsch)... aber keine Cross-Serial-Dependencies * Jan sagt, dass wir Hans ein Haus helfen anstreichen Quellen: W. J. Savitch, E. Bach, W. Marsh [eds.]: The Formal Complexity of Natural Language. Studies in Linguistics and Philosophy, vol

20 erlaubt Zentraleinbettungen De Jan säit, dass mer em Hans es Huus aastriiche hälfed Zürichdeutsch... und Cross-Serial-Dependencies De Jan säit, dass mer em Hans es Huus hälfed aastriiche Quellen: W. J. Savitch, E. Bach, W. Marsh [eds.]: The Formal Complexity of Natural Language. Studies in Linguistics and Philosophy, vol

21 Kontextsensitive Grammatik Eine Kontextfreie Grammatik (KFG) kann nicht gleichzeitig beiden Arten von Verschachtelung abbilden, dazu braucht es eine Kontextsensitive Grammatik (KSG) Eine KSF funktioniert genau wie eine KFG. Zusätzlich erlaubt sie aber auch Ersetzungsregeln, die auf der linken Seite mehr als ein Symbol haben z.B.: Np Vp Np S Vp

22 Was ist eigentlich eine Grammatik? Schulgrammatik | Kontextfreie Grammatik | Grammatik im Gehirn geht es um Produktion oder Rezeption? beispielhaft oder funktional? deskriptiv oder präskriptiv/normativ? empirisch oder abstrakt? angeboren oder erlernt? kann man Syntax und Semantik trennen? – (und was ist mit Morphologie?)

23 Noam Chomskys Ansatz Vorteil: – Linguistik wird funktional (exakt) Probleme: – Kompetenz/Performanz Unterscheidung Chomskys Theorie ist nicht empirisch falsifizierbar – Semantik? – Lernbarkeit? – KFG reicht nicht, KSG ist zu mächtig, und es gibt andere Arten, Syntax zu formalisieren

24 Formale Sprachen und Automaten Kontextfreie Grammatik Kontextsensitive Grammatik Reguläre Grammatik Allgemeine (Phrasenstruktur-)Grammatik Kellerautomat Turingmaschine Endlicher Automat Linear beschränkte Turingmaschine Wie gehören diese Begriffe zusammen?

25 Chomsky Hierarchie: L(0) L(1) L(2) L(3) rekursiv aufzählbare Sprachen (Typ 0) allgemeine Grammatik allgemeine Turingmaschine kontextsensitive Sprachen (Typ 1) kontext- sensitive G. lineare TM kontextfreie Sprachen (Typ 2) kontext- freie G. Keller- automat reguläre Sprachen (Typ 3) reguläre Grammatik endlicher Automat

26 post_rau_fragen.docx (Partnerarbeit) 1.Wie heisst ein Ausdruck, den eine Formale Sprache hervorbringt oder prüft? 2.Worin unterscheiden sich Sprache, Grammatik und Automat? 3.Was ist das Verhältnis zwischen regular expressions und endlichen Automaten? 4.Welche Übergänge eines endlichen Automaten zeichnet Herr Rau mit Bleistift? 5.Wie lange braucht ein endlicher Automat, um das Wortproblem zu beantworten? 6.Für welche Arten von Ausdrücken reicht eine reguläre Sprache nicht aus? 7.Was genau bedeutet kontext-sensitiv? 8.Warum heissen Sprachen vom Typ 0 semi-entscheidbar? 9.Warum sind Typ 1 Sprachen entscheidbar? 10.Worin unterscheiden sich die verschiedenen Sprachtypen in Bezug auf die Produktionsregeln? 11.Können sie jetzt die beiden verbleibenden Fragen (d & e) im Aufgabenblatt zum kontextfreien Krähen beantworten? 12.Warum beschäftigt sich die Informatik mit formalen Sprachen?

27 Java-Syntax als KFG formulieren (Ergebnisse mit contextfreegrammar.jar überprüfen) 1.Deklaration von Variablen 2.Operatoren 1.+, -, *, /,... 2., ==,... 3.() – auch verschachtelt 3.Loops (while, for,...) 4.Methoden schrittweise erweitern

28 ENDLICHE AUTOMATEN Theoretische Informatik: Formale Sprachen/Automaten

29 Überblick Formale Sprachen Formale Sprachen Chomsky- Hierarchie SprachtypGrammatikartAkzeptierende Maschine Typ 0rekursiv aufzählbare Sprachen allgemeine (Phrasen- struktur-)Grammatik Turingmaschine Typ 1kontextsensitive Sprachen kontextsensitive Grammatik linear beschränkte Turingmaschine Typ 2kontextfreie Sprachenkontextfreie GrammatikKellerautomat Typ 3reguläre Sprachenreguläre Grammatikendlicher Automat Hierarchische (Einschluss-)Beziehung Sprachen werden zunehmend allgemeiner und mächtiger, aber auch komplizierter und ressourcenhungriger Äquivalenzbeziehung, jede Grammatikart kann in einen entsprechenden Automaten umgewandelt werden (und umgekehrt) kann auch als RegEx formuliert werden, wenn Akzeptor

30 Formale Definition reguläre Sprache L(3) = {T, N, S, E, P} L: Language (in Klammern steht oft der Typ) T: endliche Menge der Terminalsymbole N: endliche Menge der nicht-Terminalen Symbole S: Startsymbol; S N (E: Endsymbol; E T) P: endl. M. von Produktionsregeln; P N T [N] L( Typ ) definiert eine (meist unendliche) Menge von Worten dieser Sprache und ermöglicht es in endlicher Zeit zu berechnen, ob ein gegebenes Wort zu dieser Sprache gehört ( = Wortproblem)

31 Formale Definition endlicher Automat M = {Q, Σ, S, E, δ} M: Maschine, Automat Q: endliche Menge von Zuständen Σ: Alphabet, endliche Menge von Zeichen S: Startzustand des Automaten; s Q E: endliche Menge von Endzuständen; s Q δ: endl. M. von Übergangsrelationen; δ Q × Σ × Q Für jeden Automaten M gibt es eine äquivalente Sprache L und umgekehrt. Akzeptierende Endliche Automaten, bzw. reguläre Sprachen, können auch als regular expressions formuliert werden

32 Formales: Grammatiken Produktionsregeln (Ersetzungsregeln, transitions) : x y (x :: y, x := y, x = y) Markierung von Terminalen: x (x, ) Vereinfachungen auf der rechten Seite: x | y bedeutet x ODER y [x] bedeutet optional (0 oder 1 x) {x}bedeutet 0, 1 oder n x

33 Formales: Endlicher Automat als Zustandsdiagramm/Übergangsgraph Startzustand (es kann nur Einen geben!) Startzustand (es kann nur Einen geben!) Kreise = Zustände Doppelkreis = Stoppzustand, wird erreicht durch Eingabe ε Doppelkreis = Stoppzustand, wird erreicht durch Eingabe ε Pfeile = Übergänge; Label = Eingabe, die diesen Übergang bedingt Pfeile = Übergänge; Label = Eingabe, die diesen Übergang bedingt

34 Formales: Regular expressions Minimalsyntax (alles weitere lässt sich hieraus ableiten) : | bedeutet ODER * bedeutet 0 bis n mal (das vorhergehende Zeichen) () Gruppierung ε leeres Zeichen Beispiele: a|b* steht für {ε, a, b, bb, bbb,...} (a|b)* steht für {ε, a, b, aa, ab, ba, bb, aaa,...} ab*(c|ε) steht für {a, ac, ab, abc, abb, abbc,...}

35 Was tut diese reguläre Sprache? Zustandsdiagramm: Grammatik: Regular Expression: (b|ab*a)* S b S | a X | b X b X | Y Y a | a S Lösungshilfe: a durch 1 ersetzen, und b durch 0

36 Exorciser (s. Link im Wiki) Löse jeweils 2-3 der einfachen Aufgaben zu: Automatenkonstruktion RegEx Endlicher Automat Endlicher Automat RegEx

37 Endliche Automaten überall

38 ZustandBedingungFolgezustand PatrolPlayerIsNearAttack OwnHealth < 25Flee AttackPlayerIsDeadPatrol FleeNOT PlayerIsNearPatrol

39 Definiere, mit dem jeweils praktischsten Formalismus... 1.Die (reguläre) Sprache aller gültigen - Adressen in den TLDs ch, de und com 2.Einen Automaten, der Tickets für CHF 1.50 verkauft und Münzen zu 1 und ½ Franken, sowie 20 und 10 Rappen annimmt 3.Die Funktionen der max. zwei Knöpfe (d)einer digitalen Armband- oder Stoppuhr

40 Noch ein Beispiel: T = { h, a, l, e, u, j} N = { FROHLOCKE, HA, LE, LU, JA } S = FROHLOCKE P = { Frohlocke HA l LE LU JA HA h a {HA} LE l e {LE} LU l u {u} JA j a } Sprachtyp ?

41 Frohlocke 1.Leite 3 gültige Worte ab und überprüfe sie auf 2.Schreibe die Produktionsregeln für die Sprache Frohlocke so um, dass sie den Anforderungen an eine reguläre Sprache entsprechen 3.Formuliere die Sprache Frohlocke als Zustandsdiagramm eines Endlichen Automaten 4.Formuliere die Sprache Frohlocke als RegExp Frohlocke HA l LE LU JA HA h a {HA} LE l e {LE} LU l u {u} JA j a Frohlocke HA l LE LU JA HA h a {HA} LE l e {LE} LU l u {u} JA j a

42 Frohlocke-Automat Das ist die umständliche Version, mit Silben als Zeichen (z.B. ha, le,...) wird es etwas einfacher

43 Programmieren 1.jUnit-Tests (test-driven development) 2.GUI-Programming (basics) 3.Datenstrukturen (stack) 4.evtl. Interfaces

44 Exkurs Software Development

45 Linear Development (Wasserfallmodell) RequirementsDesignImplementationVerificationMaintenance

46 Iterative Development (Spiralmodell) DesignImplementationTestingEvaluationPlanningRequirements Initial Idea Deployment Iteration

47 DesignImplementation Testing (automated) Evaluation Planning (minimal) Requirements (as Tests) Test Driven Development Initial Idea Deployment

48 jUnit-Tests in NetBeans

49 Test Driven Programming Warum? – man weiss immer genau, was das nächste Ziel ist, und wann man es erreicht – man ist gezwungen, diese Nahziele präzise festzulegen – man bemerkt, wenn etwas nicht mehr funktioniert, das schon ging – man spart sich eine Menge Testen von Hand... als jUnit-Tests formulieren Code schreiben oder umschreiben und STÄNDIG TESTEN Anforderungen an das Programm identifizieren und... Fehler reproduzieren und... Alle Tests grün Bugs gefunden

50 Zusammenfassung: Als Erstes: Anforderungen als Tests formulieren Tests für alle nicht trivialen Methoden (besonders boundary cases!) Tests nacheinander (einzeln) abarbeiten Nach jeder nicht-trivialen Änderung testen Bei nicht-trivialen Problemen/Bugs: Test schreiben zum Nachweis, dann erst korrigieren Erst wenn alle Tests grün sind über die nächsten Schritte nachdenken als Tests formulieren

51 Der Haleluja-Automat (Vorlage im WIKI) 1.Test-Klassen anschauen und verstehen – evtl. Zusatzinfo zu jUnit-Tests im Netz suchen 2.Methoden der beiden Parser-Klassen implementieren, bis alle Tests grün sind – ggf. weitere Tests hinzufügen 3.GUI-Funktionalität implementieren – es fehlt nur eine Methode, s. TODO & comment 4.Selbständig erweitern oder mich fragen

52 KELLERAUTOMATEN Theoretische Informatik: Formale Sprachen/Automaten

53 Klammergebirge That the same computer that solved a problem could prepare its own instructions was a critical moment in the birth of software (Paul E. Ceruzzi, 1998)

54 Aber wie arbeitet man solche Instruktionen ab? Rüthishausers Algorithmus (1951) 1.suche die höchste schliessende Klammer 2.gehe rückwärts bis zur öffnenden Klammer 3.berechne den Ausdruck dazwischen 4.lösche die Klammern und fang von vorne an Problem: O(n 2 ) d.h. der Aufwand wächst mit dem Quadrat der Länge des Ausdrucks

55 Die Lösung des Problems Wofür ist Patent de ? Wofür bekam Friedrich Bauer 1988 den IEEE Computer Pioneer Award zugesprochen (sozusagen der Nobel Preis der Informatik) Und was hat das mit Kellerautomaten zu tun?

56 Der Stack (Stapelspeicher/Kellerspeicher) Eine Datenstruktur LIFO-Prinzip (Last-In-First-Out) Operationen: – push – pop Kellerautomat: Das Klammergebirge kann so von links nach rechts abgearbeitet werden O(n) Kellerautomat: Das Klammergebirge kann so von links nach rechts abgearbeitet werden O(n)

57 Klammerung verifizieren L = {a n b n } = {ab, aabb, aaabbb,... } Ein Endlicher Automaten als Akzeptor?... bräuchte unendlich viele Zustände Um die Sprache zu erkennen, muss sich der Automat die Anzahl der bereits gelesenen as merken im Stack

58 Programmieraufgabe 1.Eigenen Stack als Klasse implementieren – muss eigentlich nur mit STRINGS funktionieren – Erweiterung 1: weitere Datentypen – Erweiterung 2: Stack als verkettete Liste (von Items) 2.Kellerautomat implementieren – soll die Stack-Klasse benutzen – soll (allgemeine) Palindromsprache akzeptieren – Erweiterung 1: soll Klammerung verifizieren: () [] & {} – Erweiterung 2: GUI für den Automaten

59 Einen Stack implementieren Konstruktor myStack() NachherEin leerer Stapel ist erzeugt. Methode isEmpty(): boolean NachherDie Methode liefert den Wert true, wenn der Stapel keine Elemente entha ̈ lt, sonst liefert sie den Wert false. Methode push (Object pObject) Vorher Der Stapel ist erzeugt. NachherpObject liegt oben auf dem Stack. Methode pop(): Objec t Vorher Der Stapel ist nicht leer NachherDas oberste Element wird zurückgegeben und vom Stapel entfernt. Methode peek(): Objec t Vorher Der Stapel ist nicht leer. NachherDas oberste Element wird zurückgegeben, aber nicht vom Stapel entfernt.

60 Basierend auf JAVA-Array String[] keller = new String[4]; //default value is NULL int topPos = -1; Achtung: Arrays habe fixe Länge! – was tun, wenn der Stack zu gross wird? Achtung: Arrays speichern nur Variablen eines Typs! – wie hält man den Typ möglichst allgemein? t opPos = 0

61 Programmieraufgabe 1.Eigenen Stack als Klasse implementieren – muss eigentlich nur mit STRINGS funktionieren – Erweiterung 1: weitere Datentypen – Erweiterung 2: Stack als verkettete Liste (von Items)

62 Stack als linked list private Klasse Item (oder Node) – mit Inhalt und Pointer auf nächstes Item Items können verschiedene Datentypen haben

63 Palindromsprache Version 1: S ε | a {S} a | b {S} b |... (soll mit beliebigen Zeichen als Terminalsymbole funktionieren) Version 2: S ε | {S} a {S} a {S} | {S} b {S} b {S} |... (soll mit beliebigen Zeichen als Terminalsymbole funktionieren) Bemerkung: Die allgemeinere Version 2 ist einfacher zu implementieren Version 1 als Erweiterung

64 Programmieraufgabe 2.Kellerautomat implementieren – sollte deine Stack-Klasse benutzen notfalls java.util.Stack – soll (allgemeine) Palindromsprache akzeptieren zuerst Tests schreiben – Erweiterung 1: soll Klammerung verifizieren: () [] & {} – Erweiterung 2: GUI für den Automaten

65 Datenstrukturen in JAVA: Collections

66

67 Take home message Datenstrukturen sind nützlich – selbst als Klasse schreiben oder – JAVA Collections benutzen Stacks werden viel gebraucht – Parsen/kompilieren eines Programms – Ausführungsreihenfolge (runtime stack bei error) Kellerautomaten programmieren ist einfach – wenn man einen Stack hat

68 Ein Kellerautomat kann entscheiden, ob ein gegebenes (JAVA- )Programm syntaktisch korrekt ist ansonsten compile- time-Error !Achtung: – Die Menge aller (JAVA-)Programme ist kontextfrei – Aber nicht die Menge der in JAVA ausdrückbaren Berechnungen

69 Turing Maschinen Theoretische Informatik: Formale Sprachen/Automaten

70 Turing Maschine

71 WIKI: ab_turingmaschine.docx WIKI: busybeaver.docx

72 TM für binäres Inkrementieren

73 Berechenbarkeit & Komplexität Theoretische Informatik:

74 Lernziele 1.Was besagt die Church-Turing-These? 2.Wie kann die Nicht-Berechenbarkeit eines Problems bewiesen werden? 3.Worum geht es bei der Bestimmung der Komplexität eines Algorithmus? 4.Was ist das P-NP-Problem? 5.Was ist die Relevanz des P-NP-Problems?

75 Was ist ein Algorithmus? KURT GÖDEL: Ein Algorithmus ist eine Folge von Regeln zur Bildung mathematischer Funktionen aus einfacheren mathematischen Funktionen. ALONZO CHURCH: Er verwendete einen ähnlichen Formalismus, den er λ-Kalkül nannte. EMIL POST: Er ersann einen Mechanismus, der Symbole manipuliert und den er Produktionssysteme nannte. STEPHEN KLEENE: Er definierte eine Klasse mathematischer Objekte, die er rekursive Funktionen nannte. ALAN TURING: Ein Algorithmus ist das, was auf der nach ihm benannten Turing-Maschine ausführbar ist

76 Church-Turing-These (1) Überraschenderweise stellte sich im Laufe der Zeit heraus, dass alle auf den ersten Blick so verschiedenen Ansätze gleichwertig sind. Als Folge dieser Gleichwertigkeit wurde die folgende Aussage eine weitverbreitete Annahme: Alle vernünftigen Definitionen von Algorithmus, sind gleichwertig und gleichbedeutend.

77 Church-Turing-These (2) Wenn alle Formulierungen gleichwertig sin, dann können wir uns auch gleich auf ein Referenzmodell festlegen: Turingmaschinen sind formale Modelle von Algorithmen, und kein Berechnungsver- fahren kann algorithmisch genannt werden, das nicht von einer Turingmaschine ausführbar ist.

78 Church-Turing-These (3) Eine Reformulierung zeigt den Wert dieser These: Jedes algorithmische Problem, das in irgendeiner Programmiersprache programmiert und auf irgendeinem dafür geeigneten Computer ausgeführt werden kann (sogar auf Computern, die noch nicht gebaut sind, aber prinzipiell gebaut werden könnten), und selbst wenn es unbeschränkt viel Zeit und Speicherplatz für immer größere Eingaben benötigt jedes solche Problem ist auch durch eine Turing-Maschine lösbar! Und alles, was mit einer Turing-Maschine nicht berechenbar ist, lässt sich überhaupt nicht berechnen.

79 Church-Turing-These (original) Die Klasse der Turing-berechenbaren Funktionen ist genau die Klasse der intuitiv berechenbaren Funktionen Diese These ist kein mathematischer Satz und sie kann auch nicht bewiesen werden. Bis heute ist aber kein einleuchtendes Gegenbeispiel erbracht worden. alle Turing-mächtigen Rechenmodelle sind gleichwertig was eine Turingmaschine nicht berechnen kann, kann prinzipiell nicht berechnet werden

80 TM = allgemeines Rechenmodell Vorteile – Simulation aller bekannter Formalismen – einfach, mechanisch umsetzbar – anschaulich Nachteile – unendlich langes Band (?!) – Programmierung kompliziert – Ablauf wird aus Struktur nicht ersichtlich – ineffizient, schlechte Laufzeit Random Access Maschine Turing Maschine

81 Die Grenzen der Berechenbarkeit Das Halteproblem für Java-Programme: Gibt es ein Java-Programm, mit dessen Hilfe man für jedes beliebige Java-Programm entscheiden kann, ob es mit jeder beliebigen Eingabe nach endlich vielen Schritten terminiert oder nicht?

82 Umformulieren zum Selbstanwendbarkeitsproblem Gibt es ein Java-Programm, das von jedem beliebigen Java-Programm, das sich selbst als Eingabe hat, entscheidet, ob es nach endlich vielen Schritten anhält oder nicht? Gibt es ein Java-Programm, das von jedem beliebigen Java-Programm, das sich selbst als Eingabe hat, entscheidet, ob es nach endlich vielen Schritten anhält oder nicht?

83 der hypothetische Stopptester class Stopptester { static boolean esStoppt; public static void main(String args[]) { // hier wird das eingegebene Programm // untersucht und je nach Ergebnis // die Variable esStoppt gesetzt. if (esStoppt) Out.println("Das Programm ist selbststoppend."); else Out.println("Das Programm ist nicht selbststoppend."); }

84 daraus abgeleitet: Seltsam class Seltsam { static boolean esStoppt; public static void main(String args[]) { // hier wird das eingegebene Programm untersucht und je nach // Ergebnis die Variable esStoppt gesetzt. // Alles so wie in Stopptester. if (esStoppt) { Out.println("Das Programm ist selbststoppend."); while (true) { // Endlosschleife } } else { Out.println("Das Programm ist nicht selbststoppend."); }

85 Ein äquivalenter Beweis aus der Aussagenlogik: Kann es einen Menschen geben, der immer die Wahrheit spricht? (egal, was er sagt) Die Antwort ist: Nein Beweis durch Widerspruch: Wir legen ihm die Aussage ich lüge immer in den Mund Entweder ist die Aussage wahr, was ja bedeutet, dass er eben nicht immer die Wahrheit sagt Oder er sagt immer die Wahrheit, dann ist aber diese Aussage nicht wahr

86 Zusammenfassung 1.Nimm an, es kann ein Programm Stopptester geschrieben werden. 2.Benutze es, um damit ein Programm Seltsam zu schreiben. 3.Zeige, dass das Programm Seltsam irgendeine undenkbare Eigenschaft hat (hier: es kann weder selbststoppend noch nicht-selbststoppend sein). 4.Folgere, dass die Annahme in Schritt 1 falsch ist. Allgemein kann man zeigen, dass es kein Programm geben kann, das für ein beliebiges anderes Programm eine beliebige nicht-triviale Eigenschaft testet Damit ist auch bewiesen, dass es wohlformulierte Probleme gibt, die prinzipiell nicht gelöst werden können Illustration des Halteproblems für Turing Maschinen:

87 Berechenbarkeit von Algorithmen prinzipiell nicht berechenbar prinzipiell berechenbar, praktisch nicht praktisch berechenbar Können wir alles, was theoretisch berechenbar ist, auch tatsächlich berechnen? was heisst hier praktisch?

88 Turm von Hanoi (original mit 64 Scheiben) Anzahl Züge: 3 Scheiben 7 Züge n Scheiben 2 n -1 Züge

89 Komplexitätsabschätzung Es geht um asymptotische Laufzeit (Speicherbedarf) Konstanten und geringere Faktoren ignorieren grosse Eingaben/Parameter Worst, best & average case Abschätzen, wie sich der Rechenaufwand des besten Algorithmus für ein Problem im ungünstigsten Fall mit immer grösser werdenden Eingaben verändert

90 Komplexitätsabschätzung Wie verhält sich die asymptotische Laufzeit für folgende Algorithmen? (wie ändert sich die Anzahl der Rechenschritte, wenn man die Anzahl der Elemente im Array verdoppelt) 1.Suchen eines Elements im Array 2.Sortieren der Elemente des Arrays 3.Alle möglichen Permutationen ausgeben

91 Komplexitätsklassen

92 noch praktikabel nicht mehr praktikabel

93 NP: Komplexität unbekannt

94 Formale Sprachen & Komplexität Formale Sprachen Chomsky-HierarchieRechnermodellKomplexität Typ 0Turingmaschine unlösbar: max O() NP: max O(?) P: max O(n k ) Typ 1 linear beschränkte Turingmaschine Typ 2Kellerautomat max O(n 3 ) Typ 3endlicher Automat max O(n) Komplexität

95 NP-vollständige Probleme Sie sind entscheidbar (=berechenbar). Sie besitzen Lösungen in exponentieller Zeit. Für keines dieser Problem wurde je ein Algorithmus mit Polynomialzeit gefunden. Niemand konnte bisher beweisen, ob sie exponentielle Zeit benötigen müssen. Alle diese Probleme sind miteinander verwandt: – Sollte jemals für ein einziges Problem ein Algorithmus mit Polynomialzeit gefunden werden, dann ergäben sich sofort Polynomialzeit-Algorithmen für alle anderen Probleme. – Umgekehrt gilt das allerdings auch (Beweis, dass NPP) nicht berechen bar NP P

96 P == NP ? Das P-NP-Problem gilt als eines der wichtigsten offenen Probleme der Informatik und wurde vom Clay Mathematics Institute in die Liste der Millennium-Probleme aufgenommen – auf seine Lösung ist eine Preis von 1 Million $ ausgesetzt.Millennium-Probleme Frage: Rein finanziell gesehen wäre man bescheuert, den Preis in Anspruch zu nehmen, falls man einen Beweis für die Vermutung P == NP gefunden hätte. Warum?

97 Lernziele 1.Was besagt die Church-Turing-These? 2.Wie kann die Nicht-Berechenbarkeit eines Problems bewiesen werden? 3.Worum geht es bei der Bestimmung der Komplexität eines Algorithmus? 4.Was ist das P-NP-Problem? 5.Was ist die Relevanz des P-NP-Problems?

98 Themen für die Probe 1.Praktische Aufgaben wie im Unterricht – Grammatiken; EA, KA & TM; basic RegExp – Exorciser-Übungen (nicht CFA) 2.Theoretische Konzepte – Chomsky Hierarchie, etc. (s. Skript von Herrn Rau) – Berechenbarkeit & Komplexität (grob, s. Lernziele) 3.Programmieren (Theorie) – test-driven development – Datenstrukturen (Stack)


Herunterladen ppt "KONTEXTFREIE GRAMMATIK Theoretische Informatik: Formale Sprachen/Automaten."

Ähnliche Präsentationen


Google-Anzeigen