Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

1 Kooperationstreffen Beschleuniger IAP, J.W. Goethe Universität Frankfurt U. Ratzinger 09.10.2012.

Ähnliche Präsentationen

Präsentation zum Thema: "1 Kooperationstreffen Beschleuniger IAP, J.W. Goethe Universität Frankfurt U. Ratzinger 09.10.2012."—  Präsentation transkript:

1 1 Kooperationstreffen Beschleuniger IAP, J.W. Goethe Universität Frankfurt U. Ratzinger 09.10.2012

2 2 Name (14 + 4) First name Research topic OttoJohannaBack Lighter – Entwicklung, HHT Jac SchönleinAndreasXUV Monochromator – Entwicklung Jac WiechulaJörgBack Lighter – Entwicklung, HHT Jac HockChristianSchalter für magnetisches Horn Jac Al-OmariHusamTransport von laserbeschleunigten Protonenstrahlen Rat El-HayekYoussefDynamische Vakuumeffekte bei SIS18 – Injektionsenergie Rat BrodhageRobertFAIR Protoneninjektor, CH-Prototyp Rat ChetvertkovaVeraAktivierung bei mittleren Strahlenergien Rat Droba, Dr.(1/1)MartinUnilac – Upgrade Rat SchäferThorstenHochfrequenz-Protonenquelle Rat KlumpBatoSchnelle Emittanzmessmaschine Rat Kanesue, Dr., Stip.TakeshiMagnetdesign für FRANZ Bunchkompressor Rat GeyerSabrinaElektronentarget Kes BrabetzChristian Kes MehlerMonika Kes TenholtGepulste Magneten Kes Gorda, Dr.(1/1)OleksiiMagnet design FAIR Collector Ring Kes Geförderte Mitarbeiter, Okt. ‘12

3 3 FAIR – Injector Developments Unilac Upgrade Replacement of the Alvarez Poststripper – Section by a Pulsed High Current FAIR Injector with increased end energy and beam quality High Current Proton Injector Enables the production of intense antiproton beams at FAIR

4 4 Proton Injector developments RFQ – Development, 324 MHz –4-Ladder Development U. Ratzinger, R. Brodhage CH - DTL – Development: –Beam dynamics G. Clemente (GSI), R. Brodhage –Prototype cavity nearly finished R. Brodhage, T. Kanesue –Power tests at GSI (2.5 MW) R. Brodhage, T. Kanesue

5 5 Proton Linac Prototype Cavity No. of gaps27 (13+14) Frequency [MHz]325.224 Energy range [MeV]11.7-24.3 Beam Loading at 70mA [kW]882.6 Heat Loss [MW]1.35 Total Power [MW]2.2 Q 0 -Value 15300 Effective Shunt Impedance [M  /m] 60 Average E 0 T [MV/m] 6.4 - 5.8 Kilpatrick Factor2.0 Coupling Constant [%]0.3 No. of Plungers11 (4+1+6) Beam Aperture [mm]20 Total Length [mm]2900 Total Mass [kg]2000 Inner Diameters 1 / 2 / 3 [mm]356.4 / 414.0 / 361.4 323.7MHz 324.6MHz Parameter list, cavity scheme and mode spectrum RF Amplitude against frequency

6 6 Proton Linac Prototype Cavity CH prototype cavity and measured gap voltage distribution Robert Brodhage

7 7 Unilac Upgrade as a Pulsed FAIR Ion Injector Gabor Plasma Lens as first Lens into Unilac Measurements at GSI – Hosti Code Development / Design and Experiments: M. Droba, K. Schulte

8 8 Unilac Upgrade as a Pulsed FAIR Ion Injector Gabor Lens for the LEBT Code Development and Measurements at IAP Beam Experiments at GSI – HOSTI in July ’12 were quite successful Improved prototype: K. Schulte Simulation with GABLENS Lens off, 30 mA Ar 1+, 124 keV, 0.17 mmmradLens on, 9.8 kV, 10.8 mT, 35 mA, 0.247 mmmrad

9 9 Diameter of the plasma vessel 23 cm Volume of the vessel V 6000 ml Inductance of the primary coil L 0 2.1 mH Number of coil turns 7 Capacitance of the bank C 37.50 uF Operating Voltage U 0 6 – 15 kV Maximum stored energy W 0 4 kJ Fig.8 Theta-pinch device at the Univerisity of Frankfurt The parameters: Fig.9 Equivalent circuit Theta-pinch array as Plasma Stripper (J. Jacoby) C. Teske…. Light intensity versus time

10 10 Stripper development for about 1.4 AMeV Development of simulation tools Study of solid, fluid and plasma strippers Comparison with experiments M. Droba,.. with GSI Stripper foil exp., 20 μg/cm 2 : W. Barth et al., LINAC10, p. 154 83.3 MV x 20 mA x 1.2 % x 80 μs = 1.6 J. 1 hour per foil at 4 Hz feasible!!!

11 11 Unilac Upgrade as a Pulsed FAIR Ion Injector Superconducting versus room temperature 325 MHz CH – cavities Development of high acceleration gradients of about 10 MV/m Improved injection into SIS 18 or into SIS 100, alternatively Marco BuschAli Almomani & N.N.

12 12 Magnet Design and Construction T. Kanesue Bunch compressor etc……

13 13 Advanced Magnet Design T. Kanesue, Field modelling for 9 beam paths with individual edge focusing and field levels With OPERA 3D from Vector Fields. Ready for FAIR - HEBT magnet contributions.

14 14 FRANZ at Stern-Gerlach-Zentrum Intense proton beams (several A / 1 ns at the compressor target) Experimental accelerator experience for students and doctorands Astrophysics program complementary to FAIR (n capture, s-process)

15 15 FAIR Rings Beam – Wall Interaction, Charge Exchange, Dynamic Vacuum Particle losses by beam - wall interaction (in cooperation with P. Spiller)

16 16 Investigation of Dynamic Vacuum Effects Y. El Hayek, P. Puppel, IAP and GSI Simulated pressure evolution along the circumference for one SIS18 cycle. The injection losses can be noticed at 211 m, where also the injection septum is located.

17 17 RF Proton Source development RF driven ion source, 13.5 MHz, T. Schäfer

18 18 Hochstrom-Emittanz-Messung wird ausgelegt für Strahlströme von bis zu 200 mA Strahlenergie bis einige AMeV. Gekühlte Schlitze bis P = 25 kW, magn. Elektronenunterdrückung Verschiedene Detektionsvarianten in Untersuchung: Drahtgitter Szintillator Vergleich mit optischer Emittanzmessung Bato Klump

19 19 Development for the pbar - Target Focusing of the antiprotons after the target by a magnetic horn Development of a High Current switch: C. Hock High Current Lorentz – Drift – Switch LDS Requirements for the switch U max 20 kV I max 400 kA T2.8 - 40 µs  A/  t 6E10 – 8.5E11 A/s Dutycycle0.2 Hz Magnetic Horn

20 20 Studies of the effect of high intensity in SIS100 Program of activity for Frederik Kesting (doctorand), in coll. with G. Franchetti Modeling of Space Charge and of the Incoherent Collective Effects of Space Charge for FAIR Verification of the limits of frozen models on the self-consistent dynamics of the “incoherent effect”. Verify to what extent new effects appear into the beam prediction when a self-consistent 2D or 2.5D is used. Upgrade of frozen models in MICROMAP to semi-frozen will be worked out to the purpose of speeding up the codes run time. Effectiveness of the resonance compensation for phenomena of self-consistent periodic res. crossing for a reference scenario in the SIS100 will be carried out. Benchmarking of the effectiveness of the compensation in SIS18 and PS synchrotron in simulations and experiments will be conducted.

21 21 MAIN FUTURE TASKS Unilac Upgrade as FAIR Heavy Ion Injector high gradient cavity development stripper concepts linac design Involvement in the FAIR p – linac 324 MHz RFQ development detailed cavity design (C1 – C6) diagnostics and lens layout adaption of beam dynamics High Current capabilities of FAIR injection, vacuum, simulation tools, ramp settings, extraction, injectors and synchrotrons, with GSI groups

Herunterladen ppt "1 Kooperationstreffen Beschleuniger IAP, J.W. Goethe Universität Frankfurt U. Ratzinger 09.10.2012."

Ähnliche Präsentationen