Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
1
Ziele und Informationen
G-SPARC Ziele und Informationen Ulrike Langematz Freie Universität Berlin SPARC Ideen zu G-SPARC
2
SPARC: Stratospheric Processes and their Role in Climate
1992 gegründet Als Teil des World Climate Research Programmes (WCRP) der WMO Erste Forschungsschwerpunkte des SPARC-Implementation Plan (IP): The Influence of the Stratosphere on Climate Physics and Chemistry Associated with Stratospheric Ozone Decrease Stratospheric Variability and Monitoring (UV Radiation Changes) Später Umformulierung in Stratospheric Indicators of Climate Change Stratospheric Processes and their Relation to Climate Change Modelling Stratospheric Effects on Climate
3
Seit 2005 New SPARC Initiatives Climate Chemistry Interactions
What are the past changes and variations in the stratosphere? How well can we explain past changes in terms of natural and anthropogenic effects? How do we expect the stratosphere to evolve in the future, and what confidence do we have in those predictions? Detection, Attribution, and Prediction of Stratospheric Change How will stratospheric ozone and other constituents evolve? How will changes in stratospheric composition affect climate? What are the links between changes in stratospheric ozone, UV radiation and tropospheric chemistry? Stratosphere-Troposphere Dynamical Coupling What is the role of dynamical and radiative coupling with the stratosphere in extended-range tropospheric weather forecasting and determining long-term trends in tropospheric climate? By what mechanisms do the stratosphere and troposphere act as a coupled system?
5
Climate Chemistry Interactions
Understanding and quantifying chemical and dynamical processes that lead to feedback between different climate forcings from Ravishankara, 2004; adopted from IPCC 2001 Chemical composition changes in troposphere/stratosphere; transport processes Aerosols
6
Climate Chemistry Interactions
Impact of climate change on atmospheric chemistry and the chemical composition of the atmosphere Chipperfield, 2004 Impact of temperature and water vapour changes on stratospheric ozone …… on aerosols
7
Climate Chemistry Interactions
The key role of Tropical Tropopause Layer (TTL) Cox and Haynes, 2003 Processes and regions involved in the chemistry and dynamics of TTL Roll of VSLS
8
Detection, Attribution, and Prediction of Stratospheric Change
Quantifying the historical variations (and uncertainties) in stratospheric ozone, temperature, water vapour and aerosols Ongoing work: providing high quality temperature data sets for the stratosphere. Time series of globally averaged changes in column ozone (top) and lower stratospheric temperatures (bottom) for the period Fioletov et al. (2002); Seidel et al. (2004)
9
Detection, Attribution, and Prediction of Stratospheric Change
Shine et al. (2005) Global and annual mean temperature trends for , from an average of model results using observed changes in ozone and greenhouse gases, and idealized water vapour trends., and observed temperature trends derived from satellite and radiosonde data sets. Attribution How do the temperature and constituent observations fit together within the current understanding of the stratospheric climate system. → Comparison of past observations with model simulations of varying complexity e.g., GRIPS-Activity (GCMs)
10
Detection, Attribution, and Prediction of Stratospheric Change
CCM simulations of the past and future Evaluating the reasons for model sensitivities (in particular for coupled CCMs) is a crucial step forward for predicting future stratospheric changes. e.g., CCMVal-Activity (CCMs) Time series of minimum Antarctic total ozone from TOMS observations (for ) and results from several 3D chemistry climate model transient simulations for the period ~ ( Austin et al., 2003).
11
Stratosphere-Troposphere Dynamical Coupling
Improvement of medium-range weather predictibility by stratospheric information Composites of the NAM index. (A) Composite of 18 week vortex events. A weakening (red) or strengthening (blue) stratospheric vortex can alter circulation down to the surface. (Baldwin and Dunkerton, 2001). What are the dynamical processes involved in the dynamical coupling between stratosphere and troposphere? Does the nature of the coupling change (and how) in a changing climate?
12
Ideen zu G-SPARC Thematische Konzentration auf New SPARC-Initiatives (NewSI) 3 Arbeitsschwerpunkte: Koordinierte CCM-Simulationen der Vergangenheit und Zukunft mit neuen oder verbesserten MA-CCMs und MA-O-CCMs eventuell wieder koordiniert von CCMVal Ensemblesimulationen notwendig (Kooperation DLR, MPI-M, MPI-C, FUB, externe Partner?) als Vorbereitung für WMO/UNEP Ozon-Assessment 2010 → Beiträge zu NewSI 1 (CCI), NewSI 2 (D&A) und NewSI 3 (STDC)
13
Erstellung und Nutzung von validierten, globalen Beobachtungsdatensätzen
Satellitendaten von SCIAMACHY und MIPAS-ENVISAT Einzelstationen ? zur Validierung der CCM-Simulationen für die wissenschaftliche Auswertung (Monitoring, Trends) mögliche Kooperation: FZK, UF, UB → Beiträge zu NewSI 1 (CCI) und NewSI 2 (D&A) TTL-Prozessstudien und Beobachtungen Messungen in der TTL Modellierung von Transportprozessen in der TTL mögliche Kooperation: FZJ, UF, UB → Beiträge zu NewSI 1 (CCI)
14
Themen, die nicht behandelt werden sollten:
Einfluss der Sonnenvariabilität auf das Klima (Konflikt mit DFG-SPP CAWSES) Wolken Mikrophysik (Konflikt mit DFG-SFB Troposphärische Eisphase) Auswirkungen des Flugverkehrs auf das Klima Labormessungen Messkampagnen Entwicklung von Messinstrumenten Wichtig: Vernetzung der Projekte
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.