Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Anwendungsbeispiele Vertrieb durch:

Ähnliche Präsentationen


Präsentation zum Thema: "Anwendungsbeispiele Vertrieb durch:"—  Präsentation transkript:

1 www.femcos.de Anwendungsbeispiele Vertrieb durch:
Forschungsgesellschaft für Technische Mechanik FEMCOS - Ingenieurbüro mbH Drehkopf einer mobilen Betonpumpe Drehgestellrahmen eine Güterwaggons

2 Berechnungsbeispiele im Praktikum
Ebenes Fachwerk Ebener Balken Scheibe Spezielle Auswertung der Ergebnisse Konvergenzbetrachtungen Rotationskörper Scheibe mit unterschiedlichen Dicken Dynamik: Eigenschwingungsberechnung Problematik: äquivalente Knotenkräfte für verteilte Lasten Problematik: Substrukturtechnik Modellierung einer Konsole mit Schalenelementen Genauigkeitsunteruchungen zu verzerrten Elementen Informationsmaterial im Internet Download COSAR Demo-Version (max. 250 Elemente)

3 Modell einer Fachwerkbrücke

4 Ebenes Fachwerk (Berechnungsmodell)
1400 X1 242 100 200 X2 F 1 3 8 7 6 5 4 2 P3 P4 15 14 13 12 11 10 9 19 21 23 24 25 26 27 P5 16 18 20 22 17 P10 P9 P1 P2 P7 P6 P14 P13 P12 P11 P15 P8 Querschnittsflächen der Stäbe: Untergurt (Al): Stäbe 1 bis A = 30 mm² Obergurt (Al): Stäbe 8 bis 13 A = 28 mm² Diagonalstäbe (Fe): St. 14 bis A = 24 mm² Belastung: F = 25 N Materialwerte: Alumin. E = N/mm²  = 0,27  = 2,7 g/cm³ = 2,710-9 t/mm³ Stahl E = N/mm²  = 0,3  = 7,85 g/cm³ = 7,8510-9 t/mm³

5 Ebener Fachwerkstab Räumlicher Fachwerkstab
Kann eine beliebige Lage in der Ebene haben Räumlicher Fachwerkstab Kann eine beliebige Lage im Raum haben

6 Ebenes Balkentragwerk
Querschnitt für alle Bereiche: 500 C x3’ x2’ x3’ 20 40 500 x2’ A = 800 mm² Ix3’x3’ = mm4 Wb = 5333 mm³ x1’ x1’ q F x2’ D x3’ B 800 x1’ x2’ x3’ Material: Stahl Belastung: F = 500 N q = 1 N/mm A

7 Ebener Balken Räumlicher Balken
Kann eine beliebige Lage in der Ebene haben Räumlicher Balken Kann eine beliebige Lage im Raum haben

8 Gelochte Scheibe Ausnutzung der doppelten Symmetrie
b = 100 mm d = 40 mm t = 5 mm E = N/mm² = 0,3 p = 100 N/mm² p r p b t dick 2b x3 Patch 3 Patch 2 Patch 1 r x2 x1 L6 L5 L4 L3 L2 L1 P3 50,0,0 P2 20,0,0 L9 L8 L7 P6 50,50,0 P5 100,50,0 P4 100,0,0 P8 0,20,0 P7 0,50,0 P9 0,0,50 P1 0,0,0 Ausnutzung der doppelten Symmetrie Anbringung von Symmetrierandbedinungen erforderlich: Verschiebung senkrecht zur Symmetrielinie muss Null gesetzt werden Modellierung eines Viertels der Scheibe

9 Scheibenelemente Lineare Elemente u2 u1 Quadratische Elemente

10 Rotationskörper: Kreisringscheibe
r = 50 mm R = 250 mm d = 10 mm E = N/mm²  = 0,3  = 7,85 g/cm³ = 7,8510-9 t /mm³ = 7,85 N s2/mm4 pi = 20 N/mm² pa = 10 N/mm²  = 100 1/s R r pi d dick pa x2 P5 50,10,0 P6 0,10,0 P4 250,10,0 L3 Verwendung eines Meridianschnittes für die Modellierung L4 L2 x3 x1 L1 P1 0,0,0 P2 50,0,0 P3 250,0,0

11 Spannungen für Druckbelastung
0,833 -9,167

12 Spannungen für Fliehkraftbelastung
1,295 4,082 1,021

13 Rotationssymmetrische Elemente
(quasi-ebene Elemente) u2= uz u1= ur Neben den dargestellten quadratischen Elementen sind auch lineare rotationssymmetrische Elemente verfügbar.

14 Scheibe mit unterschiedlichen Dicken
Anwendung der Substrukturtechnik E1,d1 E2,d2 E2,d2 F E1 = N/mm2, n1 = 0,3 E2 = N/mm2, n2 = 0,3 d1 = 3 mm d2 = 6 mm F = 1000 N

15 Eigenschwingungsberechnung für eine eingespannte Rechteckscheibe
Dicke 1 mm 10 100 E = N/mm2 n = 0,3 r = 7,85 kg/dm3 = 7,85 * 10-9 Ns2/mm4

16 Analytische Lösung für die Biegeeigenfrequenzen eines Balkens
(aus Hütte, “Das Ingenieur-wissen“, S. E55) Eigenkreisfrequenz: w1 = C/l12 mit C2 = EI/rA Eigenfrequenz: f1=w1/2p

17 Ersetzung von verteilten Lasten durch äquivalente Knotenkräfte
Dicke 1 mm 10 q0 = 600 N/mm 100 F1 = ? N Dicke 1 mm 10 F2 = ? N F3 = ? N 100 E = N/mm2, n = 0,3

18 Anwendung der Substrukturtechnik
Untersuchungen zu Effekten bei der Nutzung der Substrukturtechnik für statische und dynamische Berechnungen Substrukturierung Gesamtmodell 100 300 100 Substruktur 2 Dicke 1 mm 100 100 Substruktur 3 100 q = 10 N/mm Substruktur 1 Substruktur 4 Hyperstruktur

19 Modellierung einer Konsole mit Schalenelementen
Dicke 5 100 80 140 80 40 30 E = N/mm2 n = 0,3 p = 0,15 N/mm2 r=20 r=15 60 100 Dicke 3 280

20 Genauigkeitsuntersuchungen zu verzerrten Dreieck- und Viereck-Elementen
Kragträger-Scheibenmodell Dicke 1 mm 10 Lastfall Einzelkraft F = 100 N 100 Dicke 1 mm 10 Lastfall Biegemoment p = +/- 100 N/mm2 100

21 Biegespannungen für Lastfall Einzellast für diverse Vernetzungsvarianten

22 Biegespannungen für Lastfall Biegemoment für quadratische und lineare Elemente
quadratische Elemente lineare Elemente


Herunterladen ppt "Anwendungsbeispiele Vertrieb durch:"

Ähnliche Präsentationen


Google-Anzeigen