Einführung in Physik und Technik der Teilchenbeschleuniger

Slides:



Advertisements
Ähnliche Präsentationen
Warum benötigen wir immer grössere Beschleuniger (wie den Large Hadron Collider LHC bei CERN/Genf)? Amand Fäßler, Tübingen.
Advertisements

Amand Fäßler, Tübingen RC Winterthur 14. Juli 2010
Protonenbeschleunigung
Beschleuniger Prinzip
Elektronenstrahl in Elektronenstrahlröhre
Struktur der Materie Atome Kerne Teilchen Energie eV Festkörper Chemie.
Günter Quast Karlsruhe, 4. Oktober 2004 Institut für experimentelle Kernphysik 1 Die großen Zukunftsprojekte: Der Large Hadron Collider (LHC) und ein Elektron-Positron-Linearbeschleuniger.
“Physik am Samstagmorgen”
CERN Von den Anfängen zum Welt-Labor für Teilchenphysik.
Physik jenseits des Standardmodells
Gliederung Was ist SUSY Motivation für SUSY
Name der Kraft Rel. Stärke Reich- weite Teilchen auf die die Kraft wirkt Feld- quanten Typische Lebens- dauer starke 1 Quarks 8 Gluonen Hadronen Mesonen.
Kilian Leßmeier Universität Bielefeld
Kap. 1: Einführung Übersicht Hadron-Kollider
Martin zur Nedden, HU Berlin 1 Physik an Hadron-Collidern, WS 2006/2007 Kap 1, Intermezzo: Beispiele von hadronischen Kollisions- Experimenten D0 am Tevatron.
…Planung und Bau eines Detektors für die Teilchenphysik Unsichtbares sichtbar machen... R.-D. Heuer, Univ. Hamburg Heidelberg,
Physik für Mediziner, Zahnmediziner und Pharmazeuten SS
Nacht der Wissenschaft, Physikalisches Institut, Nov 10, 2007 Kai Schweda 1 Der Urknall im Labor Kai Schweda, Physikalisches Institut.
Die Geschichte vom Anfang der Welt
Ties Behnke: TESLA - ein Weg zur Weltformel? 1 Tag der Wissenschaft - Berlin: TESLA Licht der Zukunft Teilchenphysik bei TESLA ein Weg zur.
Von Quanten, Quarks und der spanischen Königin Ein Ausflug an die Grenzen der Physik Peter Schleper Hamburg,
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 9. Mai 2006
Erdgebundene Beschleuniger
Der Elektron-Positron Linearcollider TESLA
Entdeckung des Myons und des Pions in der kosmischen Strahlung
Grenzfall der Thomson-Streuung
Bild 1 1 eV Grenzfall der Thomson-Streuung 10 keV 100 keV 1 MeV.
Laser am Limit: Materie in ultrastarken Laserfeldern
Experimentelle Methoden der Teilchenphysik oder Rundgang durch das CMS-Experiment Thomas Schörner-Sadenius, Georg Steinbrück Wir beschäftigen uns in dieser.
Das Zyklotron Inhalt: Geschichtliches Funktionsprinzip Probleme
Kern- und Teilchenphysik 2
Teilchenbeschleuniger
Perspektiven Elektromagnetische Sonden
Das LHCb-Experiment am CERN The Large Hadron Collider beauty Experiment Outer Tracker Gruppe des Physikalischen Instituts Heidelberg Wechselwirkungen zwischen.
Kosmologie und Teilchenphysik
Kern- und Teilchenphysik
Vakuumphysik und Technik für Teilchenbeschleuniger
R.Schmidt - Ausstellung Weltmaschine Der LHC Beschleuniger: Technologie an der Grenze des Machbaren Der LHC Beschleuniger: Technologie an der.
Beispiel für kollektive Effekte: Raumladung
Masterclasses Hands-on Particle Physics
Masterclasses Hands-on Particle Physics
Das Higgs-Teilchen - Der letzte Baustein im Standard Modell
TITELBLATT Lehrstuhl für Beschleuniger- physik 13. Juni 2003.
Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften 16. December December 2003 Das Experiment CMS am Large Hadron.
Beschleuniger Teilchen umgeben uns überall
Besuch im Teilchenzoo Claudia-Elisabeth Wulz Juli 2011
Einführung in die Physik der Teilchenbeschleuniger
Magnetfelder und Teilchenfokussierung
Entwicklung der Beschleuniger und Beschleunigertypen
Beschleunigung und longitudinaler Phasenraum
Synchrotronstrahlung
Teil 10: Large Hadron Collider
Magnettechnik für Teilchenbeschleuniger
1 Rechnergestützte Beschleuningerplanung - Beispiele für Programme I Es gibt hunderte von Programmen, die dem Beschleunigerphysiker bei der Entwicklung.
dunkle Materie und der LHC
Galaxiencluster, dunkle Materie und der LHC. Dunkle Materie August 2006: NASA Finds Direct Proof of Dark Matter
Michael Hauschild / CERN 1 Deutsche Beteiligungen in der Teilchenphysik, Informationen und Material über Teilchenphysik in Deutschland.
European Masterclasses 2007 Teilchenbeschleuniger&Detektoren.
Zürcher Festival des Wissens 4.–12. Mai 2001 Nachhaltige Begegnungen.
Teil 9: Kreisbeschleuniger
Teil 3: Proton Synchrotron Booster
Teil 4: Proton Synchrotron
Galaxien, dunkle Materie und der LHC. Etwas fehlt Wie schnell sich ein Stern in einer Galaxie um das Galaxienzentrum dreht, seine Rotationsgeschwindigkeit,
Freitag, 28 September 2007 Prof. G. Dissertori
Teilchenphysik-Quiz Präsentationstitel, Autor.
Michael Hauschild / CERN 1 Deutsche Beteiligungen in der Teilchenphysik, Informationen und Material über Teilchenphysik in Deutschland.
Kreisbeschleuniger und Speicherringe
Neutrino-Oszillation !
Whirlpool Spiralgalaxy 28 Millionen Lichtjahre
ALICE: Reise zum Urknall
 Präsentation transkript:

Einführung in Physik und Technik der Teilchenbeschleuniger Rüdiger Schmidt - CERN Vorlesung an der Technische Universität Darmstadt im WS 2000-2001 Februar 2001

Übersicht Einleitung der Vorlesungsreihe Überblick der Technologien für Teilchenbeschleuniger Beschleunigertypen, Anwendungen und wesentliche Parameter Synchrotronstrahlung Vakuumphysik und Technik für Teilchenbeschleuniger Konventionelle und Supraleitende Magnete für Teilchenbeschleuniger Messverfahren für Teilchenstrahlen und Strahlbeobachtung Rechnergestützte Beschleuningerplanung - kurze Übersicht und - ein Beispiel Der LHC als eine Anwendung von Teilchenbeschleunigern

Danksagung Alle Kollegen, die mir für diese Vorlesungen ihr Material überlassen haben sei herzlich gedankt, inbesonders S.Russenschuck, A.Verweij, R.Jones, T.Linnecar und M.Meddahi. Für die freundliche Hilfestellung bedanke ich mich besonders bei H.Lengeler vom CERN, und ausserdem bei den Kollegen von der TU Dramstadt. Die Darstellung folgt in einigen Teilen dem ausgezeichneten Buch von K. Wille, aus dem auch einige Abbildungen übernommen wurden.

Modellbeschleuniger Als Anwendung für die vorgestellten Themenbereiche werden wir einen Modellbeschleuniger bauen. Da die Werkstätten an der TU Darmstadt in dieser Woche nicht die notwendigen Komponenten herstellen können, und auch die Finanzierung dieses Projektes keinesfalls gesichert ist – werden wir uns mit einem Computermodell eines Beschleunigers zufriedenstellen. Andere Beispiele betreffen den im Bau befindlichen LHC Beschleuniger am CERN, in dem Protonen mit einer Energie von 7 TeV kollidieren werden.

Spezielle Literatur für Teilchenbeschleuniger Physik der und Synchrotronstrahlungsquellen Klaus Wille, Teubner Teilchenbeschleuniger Studienbücher, 2. Auflage 1996 (Sehr gutes Lehrbuch) Skript von H.Lengeler Proceedings of CERN ACCELERATOR SCHOOL (CAS), Yellow Reports, für viele Themen in der Beschleunigerphysik, General Accelerator Physics, and topical schools on Vacuum, Superconductivity, Synchrotron Radiation, Cyclotrons, and others… http://schools.web.cern.ch/Schools/CAS/CAS_Proceedings.html 5th General CERN Accelerator School, CERN 94-01, 26 January 1994, 2 Volumes, edited by S.Turner Superconducting Accelerator Magnets, K.H.Mess, P.Schmüser, S.Wolff, WorldScientific 1996 Handbook of Accelerator Physics and Engineering, A.W.Chao and M.Tigner, World Scientific, 1998 (Nachschlagewerk für viele Themen in der Beschleunigerphysik - nicht als Lehrbuch geeignet) F.Kneubühl: Repetitorium der Physik, Teubner Studienbücher, Stuttgart 1982

Teilchenbeschleuniger – vier Versuche einer Klassifizierung 1) Definition - Was sind Teilchenbeschleuniger ? CAMBRIDGE DICTIONARY: A particle accelerator is a machine which makes extremely small pieces of matter travel at very high speeds, so that scientists can study the way they behave. Welche Teilchen? Was bedeutet « Beschleuniger »? 2) Wie sehen Teilchenbeschleuniger aus? Linearbeschleuniger Kreisbeschleuniger (Kreis - oder so etwas ähnliches) Recirculating Linacs 3) Welches sind die wesentlichen Parameter? Teilchenart Energie der beschleunigten Teilchen Strahlparameter

Teilchenbeschleuniger - Klassifizierung 4) Welches sind die Anwendungen von Teilchenbeschlenigen? Teilchenphysik (CERN, DESY, SLAC, FERMILAB, RHIC, KEK…) Kernphysik (S-DALINAC, GSI, RHIC….) Anwendungen von Synchrotronstrahlung (z.B. ESRF, DESY, Dortmund, Karlsruhe….) Chemie Biologie Physik Industrielle Anwendungen Medizinische Anwendungen (GSI, PSI, …) Erzeugung von Radioisotopen Bestrahlung von Patienten Archelogie Energietechnik Kernfusion Energy Amplifier (C.Rubbia, Protonenstrahl auf Bleitarget zur Verbrennung von Plutonium)

Welche Teilchen ? Von 1930 bis heute….. Elektronen Positronen Protonen Masse 511 keV, elementares Teilchen, negative Ladung e=1.602 10-19 C Positronen Masse 511 keV, elementares Teilchen, positive Ladung e=1.602 10-19 C Protonen Masse 938 MeV, kein elementares Teilchen (Quarks und Gluonen), positive Ladung 1.602 10-19 C Antiprotonen Wie Protonen aus Quarks aufgebaut, Masse wie Protonen, negative Ladung Ionen (von Deuteronen zu Blei) Ladung vielfaches einer Elementarladung, Masse von 2*Proton bis Blei Ideen für die Zukunft Myonen - Collider elementares Teilchen wie e+ und e-, Masse 106 MeV, Ladung e=1.602 10-19 C Lebensdauer: 2.2 10-6 s im Ruhesystem - in LAB System dt_LAB =  * dt_RS z.B. Beschleunigung von DNA – Bestandteilen - zur Krebstherapie

Werden in Beschleuniger Teilchen « beschleunigt »? trifft für die meisten Beschleuniger zu … aber nicht für alle ein Fernsehgerät würde man nicht als Beschleuniger bezeichnen, obwohl Elektronen mit einer Spannung von einigen kV beschleunigt werden Beschleuniger, in denen Teilchen gespeichert werden (ohne die Energie zu erhöhen) : zur Akkumulation von Positronen und Antiprotonen zur Kollision von zwei Protonenstrahlen (Injektion bei Kollisionsenergie, z.B. CERN ISR) Beschleuniger, die Synchrotronstrahlung erzeugen (einer der wichtigsten Beschleunigertypen), Injektion häufig bei Endenergie Beschleuniger, in denen Teilchen abgebremst werden : Die Erzeugung von Antiprotonen funktioniert mit Protonen, die mit einer Energie von einigen GeV auf ein Target gelenkt werden (CERN) Die Antiprotonen haben eine kinetische Energie von einigen hundert MeV, und werden für Experimente auf wenige eV abgebremst

Welche Parameter für welche Anwendung - Überblick I Teilchenphysik - Collider: Energie und Luminosität e+e- Speicherringe (LEP-CERN, B-Factories) SLC am SLAC Linearbeschleuniger (Linacs) - in Planung - TESLA - DESY, CLIC - CERN, NLC - SLAC Hadronen Proton-Proton (LHC - CERN) Proton-Antiproton Collider (SPS - CERN, TEVATRON - FERMILAB, RHIC - BNL) e+ oder e- / Proton HERA (DESY) Beschleuniger, die einen Strahl auf ein Target lenken (z.B. für Neutrinophysik): Energie und Intensität Synchrotron (SPS - CERN, TEVATRON - FERMILAB) Linearbeschleuniger (SLAC)

Welche Parameter für welche Anwendung - Überblick II Erzeugung von Synchrotronstrahlung - Brillianz, Energiespektrum der Photonen e+ und e- Speicherringe (viele !) Free electron laser (e- Linacs) oder Speicherring Kernphysik - Intensität und Teilchensorte Linacs und “recirculating linacs“ Zyklotrone Synchrotrone Ionenbeschleuniger (GSI) Industrielle Anwendungen Medizinische Anwendungen Erzeugung von Radioisotopen und Krebstherapie - Präzision und Betriebssicherheit Linacs Synchrotron Zyklotron

Gemeinsamkeiten Strahldynamik (H.Lengeler) Strahloptik longitudinaler Phasenraum (Beschleunigung) kollektive Effekte Strukturen für die Teilchenbeschleunigung Hohlraumresonatoren Magnete Vakuum Instrumentierung und Strahlkontrolle Injektion - Extraktion Teilchenquellen

Um zu hohen Energien zu beschleunigen….. Beispiel LEP Beschleunigungsstrukturen (Hochfrequenz Cavities) werden in den meisten Beschleuniger benötigt Normalleitende Cavities aus Kupfer: 1-2 MeV/m lassen sich routinemässig erreichen. Mit gepulsten Cavities (z.B. SLAC) kommt man wesentlich höher – zwischen 50-80 MV/m (in der Entwicklung) Supraleitenden Cavities: LEP : 5-8 MeV/m Ziel von TESLA : etwa 25 MeV/m Die Endenergie der e+ und e- Strahlen vom LEP Collider ist 100 GeV. Wenn der Beschleuniger als LINAC mit einer Technologie, die vor 15 Jahren zur Verfügung stand, gebaut worden wäre, hätte er eine Länge von: L = 100 GeV / 2.5 MeV = 40000 m für jeden der beiden Linearbeschleuniger für Elektronen und Positronen – d.h. 80 km Ausserdem wären die supraleitenden Cavities wesentlich teurer geworden. Schwerpunktsenergie im Zentrum = 200 GeV Elektronenlinac 40 km Positronenlinac 40 km

Luftaufnahme von LEP - in Zukunft LHC 7 TeV im LEP Tunnel Länge: 26.8 km Injektion vom SPS 450 GeV

….werden Kreisbeschleuniger gebaut Die Teilchen laufen bei jedem Umlauf durch die Beschleunigungsstruktur. Ein Umlauf dauert 89 s. In einer Sekunde macht ein Teilchen 11246 Umläufe, und läuft bei jedem Umlauf durch die Beschleunigungsstrecke. Während der Beschleunigung von 20 GeV auf 100 GeV wird das Magnetfeld in allen Ablenkmagneten von 0.024 Tesla auf 0.119 Tesla hochgefahren. Die Magnetrampe dauert einige Minuten. LEP - Umfang 26.8 km 2/4/8 Bunche / Strahl eine Vakuumkammer

Magnetrampe im Kreisbeschleuniger

Beschleunigung im Kreisbeschleuniger Aus dieser Abschätzung sieht man, das pro Umlauf eine Spannung von einigen 10 kV ausreichen würde, um ein Teilchen von 20 GeV auf 100 GeV zu beschleunigen. In LEP haben die Beschleunigungsstrukturen jedoch eine Spannung von etwa 2-3 GV (!!). => Synchtrotronstrahlung

Um zu noch höheren Energien zu beschleunigen….. LHC – 7000 GeV Protonen kollidieren mit 7000 GeV Protonen - Linac oder Ring ? Selbst mit supraleitenden Cavities vom TESLA Typ wäre der Beschleuniger 560 km lang, das wäre nicht zu bezahlen. Der LHC wird im LEP Tunnel eingebaut. Die Protonen werden bei einer Energie von 450 GeV injiziert (vom SPS), und auf 7 TeV beschleunigt. Das Magnetfeld ist: B-LHC = 7000 / 100 * B-LEP => supraleitende Magnete Um Elektronen und Positronen bei einer Schwerpunktenergie von einigen 100 GeV zu kollidieren, wird weltweit an der Entwicklung von Linearbeschleunigern gearbeitet: DESY (Hamburg): TESLA CERN (Genf): CLIC SLAC (Stanford): NLC KEK (Japan): JLC Man hofft, auf eine Beschleunigung von 20 MeV/m …. 100 MeV/m zu kommen.

Warum werden zur Erzeugung von Synchrotronstrahlung Elektronen oder Positronen gespeichert? Warum wurde LEP mit e+e- betrieben, und der LHC mit Protonen? Warum werden e+e- Linearbeschleuniger entwickelt, die Teilchen mit wesentlich mehr Energie als LEP zu Kollision bringen sollen? Warum werden die Strahldimensionen in einem Elektronenbeschleuniger mit zunehmender Energie grösser, und in einem Protonenbeschleuniger kleiner? => Abstrahlung von Synchrotronstrahlung

Bau eines Teilchenbeschleunigers zu Erzeugung von Synchrotronstrahlung Aufgabe: Eine Gruppe von Biologen, Chemiker und Materialwissenschaftler schlagen vor, eine Quelle zu bauen, die starke Röntgenstrahlung ( - Strahlung) im Energiebereich von 5 keV bis 10 keV erzeugt. Es steht eine Halle Verfügung, die eine Länge von 30 m und eine Breite von 20 m hat. Ausserdem steht ein Linearbeschleuniger zur Verfügung, der Elektronen bis zu einer Energie von 100 MeV beschleunigen kann.

Synchrotronstrahlung Bild von erster Beobachtung Synchrotronstahlung einer beschleunigten Ladung, Larmor Gleichung Winkelverteilung, Hertz’scher Dipole Lorentztransformation Relativistisch invariate Form der Strahlungsgleichung Lineare Beschleunigung Kreisbeschleunigung Winkelverteilung der Synchrotronstrahlung Energiespektrum der Synchrotronstrahlung Quantisierung der Strahlung, Anzahl der Photonen Beispiele: Beschleuniger für Erzeugung von Synchrotronstrahlung, LEP, LHC

Parameter der Synchrotronstrahlung Beschleunigte Ladungen strahlen Photonen ab. Im Beschleuniger werden geladenen Teilchen beschleunigt.… in den Beschleunigungsstrecken, d.h. den Cavities (in Richtung des Teilchenimpuls) wenn die Teilchen abgelenkt werden, also in allen (Dipol)-Magneten Der umlaufende Strahl gibt Synchrotronstrahlung ab, die wesentlichen Parameter sind: Energiespektrum der Synchrotonstrahlung Abgestrahlte Leistung Winkelverteilung der Strahlung Im folgenden werden die Parameter der Synchrotronstrahlung abgeschätzt. Eine vollständige Ableitung im Rahmen der Quatenmechanik geht über die Vorlesung hinaus.

Erste Beobachtung von Synchrotronstrahlung 1947 - 70 MeV Synchrotron, General Electric Research Lab Vakuumkammer aus Glas - daher konnte man die Strahlung beobachten

Abstrahlungswinkel der Photonen

Transformation der Photonen vom RS ins LAB System

Abschätzung der Photonenenergie

Normalisiertes Energiespektrum

Brillianz der Synchrotronstrahlung Für Experimente ist die Intensität der Strahlung eine der wichtigsten Grössen. Die meisten Experiments brauchen Photonen in einem bestimmten Energieintervall, dass 0.1% beträgt. Der Fluss ist die Anzahl der Photonen pro Sekunde in einem Energieintevall für einen Strahlstrom von 1 A. Dabei ist nicht berücksichtigt, durch welche Fläche die Photonen fliessen. Dazu wird die Brillianz eingeführt:

ESRF - European Synchrotron Radiation Facility (Grenoble)

Übersicht der Brillianz von Synchrotronstrahlungsquellen Röntgenstrahlung Erste Beschleuniger am SLAC und bei DESY - parasitär zu Teilchenphysik Erste Beschleuniger nur zur Erzeugung von Synchrotronstrahlung Weitere Beschleuniger

Experiment an der ESRF