Das Ohr und sein Modell Dr. Fridtjof Feldbusch Auszug

Slides:



Advertisements
Ähnliche Präsentationen
Vorlesung: 1 Betriebliche Informationssysteme 2003 Prof. Dr. G. Hellberg Studiengang Informatik FHDW Vorlesung: Betriebliche Informationssysteme Teil3.
Advertisements

Musikwissenschaftliches Institut
Telefonnummer.
Modelle und Methoden der Linearen und Nichtlinearen Optimierung (Ausgewählte Methoden und Fallstudien) U N I V E R S I T Ä T H A M B U R G November 2011.
Modelle und Methoden der Linearen und Nichtlinearen Optimierung (Ausgewählte Methoden und Fallstudien) U N I V E R S I T Ä T H A M B U R G November 2011.
1 JIM-Studie 2010 Jugend, Information, (Multi-)Media Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
= = = = 47 = 47 = 48 = =
Grundkurs Theoretische Informatik, Folie 2.1 © 2006 G. Vossen,K.-U. Witt Grundkurs Theoretische Informatik Kapitel 2 Gottfried Vossen Kurt-Ulrich Witt.
Vorlesung: 1 Betriebliche Informationssysteme 2003 Prof. Dr. G. Hellberg Studiengang Informatik FHDW Vorlesung: Betriebliche Informationssysteme Teil2.
N3 - Auditorisches System
Bewegte Bezugssysteme
Das freie Randwertproblem von Stokes
AC Analyse.
Prof. Dr. Bernhard Wasmayr
Studienverlauf im Ausländerstudium
Schieferdeckarten Dach.ppt
Ohr und Hören.
Prof. Dr. Bernhard Wasmayr VWL 2. Semester
Taubheit Anna Pawlowski.
Rechneraufbau & Rechnerstrukturen, Folie 12.1 © W. Oberschelp, G. Vossen W. Oberschelp G. Vossen Kapitel 12.
Distanzbasierte Sprachkommunikation für Peer-to-Peer-Spiele
2 Distanzbasierte Sprachkommunikation für Peer-to-Peer-Spiele.
1. 2 Schreibprojekt Zeitung 3 Überblick 1. Vorstellung ComputerLernWerkstatt 2. Schreibprojekt: Zeitung 2.1 Konzeption des Kurses 2.2 Projektverlauf.
Das Gehör äußeres Ohr Mittelohr Innenohr
FRAGENKATALOG GRUNDLAGEN DES SCHALLS
20:00.
„Küsse deine Freunde“ – FlexKom-App teilen
Zusatzfolien zu B-Bäumen
Physik für Mediziner und Zahnmediziner
Das Ohr und sein Modell Dr. Fridtjof Feldbusch 5. Mai 2005.
Dokumentation der Umfrage
für Weihnachten oder als Tischdekoration für das ganze Jahr
1 Ein kurzer Sprung in die tiefe Vergangenheit der Erde.
Wir üben die Malsätzchen
Messgrößen für Schallwellen
Messgrößen für Schallwellen
Messgrößen für Schallwellen
Die Sinnesorgane des Menschen
NEU! 1 2. Wo kommt diese Art von Rezeptor im Körper vor?
1. Welcher Nerv innerviert diesen Muskel? NEU!
Der Test fängt mit dem nächsten Bild an!
PROCAM Score Alter (Jahre)
Ertragsteuern, 5. Auflage Christiana Djanani, Gernot Brähler, Christian Lösel, Andreas Krenzin © UVK Verlagsgesellschaft mbH, Konstanz und München 2012.
Geometrische Aufgaben
Vorlesung Mai 2000 Konstruktion des Voronoi-Diagramms II
Symmetrische Blockchiffren DES – der Data Encryption Standard
MINDREADER Ein magisch - interaktives Erlebnis mit ENZO PAOLO
Eine kleine Einführung für Studierende der Psychologie
1 (C)2006, Hermann Knoll, HTW Chur, FHO Quadratische Reste Definitionen: Quadratischer Rest Quadratwurzel Anwendungen.
Das Gehör äußeres Ohr Mittelohr Innenohr
Aufbau & Funktion des Hörorgans
Schall und Gehör kHz KAD
Schutzvermerk nach DIN 34 beachten 20/05/14 Seite 1 Grundlagen XSoft Lösung :Logische Grundschaltung IEC-Grundlagen und logische Verknüpfungen.
Einführung in die Astronomie und Astrophysik I Kapitel III: Das Planetensystem 1 Kapitel III: Das Planetensystem.
Folie Beispiel für eine Einzelauswertung der Gemeindedaten (fiktive Daten)
Frequenz und Lautstärke
Das Ohr Außenohr Mittelohr Innenohr.
Aufbau und Funktion des Hörorgans
1 Mathematical Programming Nichtlineare Programmierung.
Es war einmal ein Haus
Folie Einzelauswertung der Gemeindedaten
J-Team: Gymnasium Ulricianum Aurich und MTV Aurich Ein Projekt im Rahmen von UlricianumBewegt.de Euro haben wir schon…  8000 mal habt ihr bereits.
Datum:17. Dezember 2014 Thema:IFRS Update zum Jahresende – die Neuerungen im Überblick Referent:Eberhard Grötzner, EMA ® Anlass:12. Arbeitskreis Internationale.
Sehen, Hören, Schmecken: wenn uns unsere Sinne täuschen
1 Medienpädagogischer Forschungsverbund Südwest KIM-Studie 2014 Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
Monatsbericht Ausgleichsenergiemarkt Gas – Oktober
6. Sitzung Das menschliche Ohr Anatomie und Funktion
Grundlagen Akustik Peter Espert.
Professor für Biophysik, Universität von Szeged, Ungarn.
Das menschliche Gehör.
 Präsentation transkript:

Das Ohr und sein Modell Dr. Fridtjof Feldbusch Auszug Department of Computer Science University of Karlsruhe Auszug bearbeitet: von I. Müller 5. Mai 2005

Überblick Schall - Grundlagen Das Ohr im Überblick Das innere Ohr Organ von Corti Auditorischer Pfad Auditorischer Cortex Fazit

Schall – physikalisch gesehen Schall ist eine Schwingung in einem elastischen Medium Kompression und Expansion des Mediums Ausbreitung in Gas und Flüssigkeiten durch Longitudinalwellen

Schalldruck-pegel [dB] Die Lautstärke Schalldruck-pegel [dB] Schalldruck [mPa] Anschauung 20 Hörschwelle 200 Ganz leiser Lüfter 40 2000 Flüstern 60 20000 Sprache 80 200000 Hausmusik 100 2000000 Güterzug 120 20000000 Schmerzgrenze

Der gute Ton

Der harmonische Klang

… und das Geräusch

Das menschliche Gehörfeld Frequenzbereich von 20 bis 20.000 Hz (altersabhängig) Schallpegel von 0 dB bis 120 dB (spl) Min. Frequenzabstand: 3% Im direkten Vergleich: 0.2 % vgl. Halbton 6% Nur 6-10 Mikrosekunden Zeitunterschied zwischen Signalen an beiden Ohren > ermöglicht räumliches Hören Bei geübten Personen (Dirigenten) sogar nur 3 Mikrosekunden

Das menschliche Gehörfeld Der Schall wird gemessen: Intensität: in dB Frequenz: in Hz Audiogramm: Schallpegel in Abhängigkeit von der Frequenz Hörschwelle Wahrnehmung-, Schmerzgrenze Hörbereich, Sprachbereich

Das Ohr im Überblick Ohrmuschel mit Gehörgang Mittelohr Innenohr Hörnerv Auditorischer Pfad Cortex Evolutionäre Entwicklung in 300 Mio. Jahren aus Seitenlinienorgan der Fische -> Gleichgewichtsorgan -> Aussackung -> Amphibien konnten nur über Kontakt des Kiefers mit dem Boden hören -> Gehörknöchelchen + Membran (z. B. Frosch) -> Gehörgang + Ohrmuschel Eustachsche Röhre früher der Wasserweg durch die Kiemen

Das Ohr im Überblick - Außenohr Ohrmuschel Knorpelig, faltig fängt Schall ein Schallmodulation je nach Richtung Gehörgang leichte S-Form Orgelpfeifen-resonanz: verstärkt um Faktor 2 Talgdrüsen Häärchen Richtungshören gestört bei Veränderung der Ohrmuschel mit Wachs Effekte des Richtungshörens: Laufzeitunterscheide der Schallwellen Lautstärkeunterscheide durch Kopf Klangunterscheide durch Ohrmuschel

Das Ohr im Überblick – Das Mittelohr Hammer Amboss Steigbügel Trommelfell Paukenfenster Ohrtrompete Trommelfell: lockeres Segel Mittelohrentzündung: Resorbtion der Gase im Mittelohr 2 Muskeln: Trommelfellspanner, Stapedius (nächstes Bild)

Die Mechanik des Mittelohrs Einfangen der Schallwellen am Trommelfell Wirkungsvolle Übertragung auf die Flüssigkeiten im Innenohr Verstärkung besonders zwischen 1 und 3 kHz Schutzfunktion: Druckausgleich über Ohrtrompete Stapedius Reflex zur Unterdrückung der eigenen Stimme Von innen aufs Trommelfell geschaut Verstärkung durch Durchmesser Trommelfell 55 mm2– Ovales Fenster 3 mm2 und Hebelverhältnis 1.3 (Faktor 30)

Das Ohr im Überblick – Das Innere Ohr Gleichgewichtsorgan und Cochlea haben gemeinsamen embrionalen Ursprung und Bestandteile, jedoch unterschiedliche Ausprägungen Ovales Fenster vom Stapes angeregt Rundes Fenster frei schwingend Schnecke im Felsenbein (härtester Knochen) Eigentliches Organ besteht aus mit Perilymphe gefüllten Membranen Gleichgewichtsorgan (Vestibularapparat) Nerv zum Gehirn Anfang der Cochleagänge Spitze der Schnecke

Das Innere Ohr – Der Vestibularapparat Aufgaben: Erfassung von Drehbewegung In Erweiterungen der Bogengänge Keine orthogonale Ausrichtung für besten Arbeitsbereich Und Linearbeschleunigung In kleinem und großem Vorhofsäckchen Trägheit von Flüssigkeiten Abbiegen von Haarzellen Genauigkeit: Beschleunigung innerhalb von 0,1 Grad/sec Auslenkung von 10 Nanometer Gehör und Gleichgewicht stehen nach wie vor in Verbindung

Das Innere Ohr – die Ohrschnecke Schneckengang Vorhoftreppe Paukentreppe Gewundenes Ganglion Gehörnervfasern Scala vestibuli (Vorhoftreppe, rot) vom ovalen Fenster kommend zum Helicotrema Scala tympani (Paukentreppe, blau) vom Helicotrema zum runden Fenster

Die Ohrschnecke Steigbügel überträgt Vibrationen auf Vorhoffenster Druckwelle bewegt sich auf Vorhoftreppe (rot) Ab der Spitze zurück über Paukentreppe zum Paukenfenster (blau) Schneckengang wird nach oben durch Reissners‘- nach unten durch Basilar-membran begrenzt. Longitudinalwelle in Wasser: ca. 1400 m/s

Die Ohrschnecke - Basilarmembran Eigenschaften der Basilarmembran Abnehmende Spannung Zunehmende Breite => größere Querschnitt / mehr Flüssigkeit Damit zur Spitze hin sinkende Resonanzfrequenz entlang der Cochlea (Passive Tonotopy) An der Basis => hohe Frequenzen (obere Abb.) An der Spitze => tiefe Frequenzen (untere Abb.)

Die Ohrschnecke - Basilarmembran Resonanzfrequenzkarte An der Basis 20 kHz An der Spitze 20 Hz Verbreiterung der Basilarmembran 4000 2000 1000 7000

Die Ohrschnecke - Basilarmembran Durch Steigbügel übertragene Vibrationen erzeugen Druckwelle bis hin zum Paukenfenster (Schallgeschwindigkeit des Wassers) Durch Ausgleich am Paukenfenster Wanderwelle durch Druckunterschied zwischen Vorhof- und Paukentreppe (sehr viel langsamer)

Wanderwelle schematisch Die Hörschnecke abgerollt: Georg von Bekesy: Untersuchung an Leichen Beschreibung der Wanderwelle durch Differentialgleichungen. Problem: Das hohe Frequenzauflösungsvermögen ist so nicht zu erklären!

Wanderwelle schematisch Die Hörschnecke abgerollt: Georg von Bekesy: Untersuchung an Leichen Beschreibung der Wanderwelle durch Differentialgleichungen. Problem: Das hohe Frequenzauflösungsvermögen ist so nicht zu erklären!

Das Organ von Corti Schneckengang Vorhoftreppe Paukentreppe Reissners‘ Membran Basilarmembran Tektorische Membran Stria Vascularis Nervenfasern Knöchernes gewundenes Lamina

Das Organ von Corti Ort der Perzeption Auf Basilarmembran Endolymphe gefüllt Lockere Struktur, steif genug zum Schwingen

Organ von Corti – Im Detail Innere Haarzellen Äußere Haarzellen Tunnel von Corti Basilarmembran Retikuläres Lamina Tektorische Membran Zellen Deiters‘ Kutikuläre Platte Hensens‘ Zellen

Organ von Corti – Im Detail Innere (links) und äußere (rechts) Haarsinneszellen mit Dendriten (gelb) der Neurone des Corti-Ganglions

Das Organ von Corti in Schwingung Schwingende Basilarmembran Bewegt darauf liegendes Cortisches Organ Höhere Festigkeit der Tektorischen Membran biegt die äußeren Haarzellen ab

Sensorische Haarzellen Mechanorezeptoren Besitzen fingerartige Ausstülpungen (Stereovilli) Bei Bewegung: Änderung des Potentials an der Membran Weiterleitung an die Nerven

Elektronenmikroskopische Aufnahmen der Sinneshärchen

Sensorische Haarzellen Zellkern Stereovilli Kutikuläre Platte Zuführendes Radialende Seitlich ausführendes Ende Ausführendes Mittende Gewundenes zuführendes Ende Innere Haarzellen Stereovilli in Linie Äußere Haarzellen Stereovilli in W-Form

Sensorischen Haarzellen Stereovilli besitzen feine Verbindungen: Seitlich in der gleichen Reihe Von Reihe zu Reihe Sog. Tip Links an deren Spitze zur nächst größeren Reihe

Sensorische Haarzellen Es gibt ca. 3.500 innere Haarzellen 12.000 äußere Haarzellen Ca. 100 Stereovilli pro Haarzelle Zahlen nehmen im Laufe des Lebens ab

Haarzellen und mechanisch-transduktiver Prozess Transduktion: Umsetzung einer Energieform in eine andere Haarzellen setzen mechanische Vibrationen in elektrische Membranpotentiale um An deren Basis: chemische Weiterleitung an Synapsen

Haarzellen und mechanisch-transduktiver Prozess Stereovilli werden abgebogen K+ dringt ein Zelle wird depolarisiert Verschließen der Kanäle Ca2+ aktiviert Bewegungsprotein Rückstellung der Stereovilli

Haarzellen und mechanisch-transduktiver Prozess Vermutung: Tip Links sind für Kanalöffnung, bzw. Schließung verantwortlich Schneller Depolarisationszyklus ( bis 100 kHz) Potenziale sinken unter Dauerton und müssen wieder hergestellt werden Hörermüdungstest

Anschluss der Nervenfasern Neurotransmitter an den Synapsen: Glutamat

Anschluss der IHC an den Nerv

Der Hörnerv Überträgt Signale von der Cochlea zum Nucleus Cochlearis Etwa 20 Nervenfasern beginnen an jeder inneren Haarzelle Auch ohne Stimuli Entladungen: „Spontane Aktivität“ Kodierung der physikalischen Eigenschaften der Töne

Kodierung auf dem Hörnerv Tiefe Töne: Phasenkodierung Hohe Töne: Ortskodierung Lautstärke: Ratenkodierung + Ortskodierung Richtung: Zeitkodierung

Phasenkodierung Maximale Entladungsrate in oberer Umkehrphase

Kodierung von Zeitdauer und Intensität Zeitdauer der Aktivierung der Hörnervzelle entspricht der Zeitdauer des Stimulus Entladungsrate kodiert Intensität Die Zunahme der Entladungsrate ist nichtlinear und hängt von der spontanen Aktivität ab. Ab gewisser Lautstärke wird Sättigungsbereich erreicht eine zunehmende Zahl von Fasern aktiviert.

Der auditorische Pfad

Der auditorische Pfad Drei Komponenten: Das auditorische Sinnesorgan  Der Hörnerv  Die auditorischen Gebiete im Gehirn

Neuronenanzahl Kern Anzahl von Zellen im Kern Nucleus cochlearis 88 000 Nucleus olivus superior 34 000 Leminiscus Lateralis 38 000 Colliculus inferior 392 000 Thalamus 364 000 Auditorischer Cortex 10 000 000

Zeitlicher Ablauf Nach bisherigem Erkenntnisstand sind folgende Hirnstammkerne für die Wellen I bis IV verantwortlich: Welle I: distaler Anteil des Nervus cochlearis Welle II: hauptsächlich proximaler Anteil des Nervus cochlearis und teilweise auch Nucleus cochlearis. Welle III: überwiegend Nucleus cochlearis Welle IV: hauptsächlich Nucleus olivus superior aber auch Nucleus cochlearis und Leminiscus lateralis Die Zuordnung von Kernen und Nervenfasern zu Erregungswellen ist schwierig, da die einzelnen Strukturen mehrere Wellen erzeugen und gleichzeitig Wellen von mehreren Strukturen erzeugt werden. Für die Wellen V und VI gibt es daher keine eindeutige Zuordnung.

Nucleus Cochlearis

Nucleus Cochlearis Erste Verarbeitung und Umschaltung Aufteilung: - ventral (Verbesserte Phasenkopplung, Weitergabe nur wenig veränderter Information zum Olivenkomplex) - dorsal (Mustererkennung) Mindestens 22 verschiedene Neuronentypen

Nuclei oliva superiori Laufzeitanalyse für tiefe Töne: Horizontales Richtungshören

Leminiscus lateralis Auditorischer Hauptpfad Ein Nebenpfad ist die Formatio Reticularis

Colliculus inferior Landkarte räumlicher Beziehungen der Töne. Reagiert auf bewegte Schallquellen. Im Colliculus inferior werden in einer Landkarte die räumlichen Beziehungen der Töne verarbeitet. Einzelne Nervenzellen reagieren dabei nur auf Bewegungen der Schallquellen in bestimmte Richtungen. Bei Tieren spielen die Colliculi inferiores für die Ausrichtung der Ohrmuscheln eine wichtige Rolle. Von hier aus gibt es zahlreiche Verbindungen zu Gehirnteilen, die für die Bewegung zuständig sind. Direkt über den Colliculi inferiores liegen die Colliculi superiores. Die Colliculi superiores kontrollieren die Bewegung der Augen, so wie die Colliculi inferiores die Ohren. Sie gehen in ihrer Verarbeitung aber darüber hinaus, denn hier treffen die Schallinformationen mit Signalen aus den optischen und taktilen Sinnessystemen zusammen. So kombinieren sie Informationen aus allen Sinneskanälen zu einer Karte, die die gesamte Körperoberfläche und somit jede Richtung im Raum mit einschließt.

Corpus geniculatum des Thalamus Aufmerksamkeitssteuerung, emotionale Bewertung

Der auditorische Cortex Primärer auditorischer Cortex in Heschewindung Streng tonotope Ordnung in Streifen Kolumnen zuständig für z. B. Lautstärkeänderung in einem Frequenzbereich Sekundärer auditorischer Cortex: Komplexere Merkmale, Spracherkennung

Rechts: Tonhöhen, Melodien Beim Laien: Tonhöhenvergleich: siehe Abb. Dabei Schläfenlappen eher Arbeitsgedächtnis (Tonhöhenspeicherung) Unterer Schläfenlappen: Komplexe, länger im Gedächtnis zu haltende Strukturen Melodien: siehe Abb. (audissoziation sgebiete) zus. Zu primärer und sekundärer Hörrinde Profis: Gleiche Stellen der linken Hirnhälfte sind aktiver!

Links: Rhythmen, zeitl. Strukturen Bei Laien: Verhältnis von Tonlängen: prämotorische Regionen Komplexere Strukturen: Rechte Hirnhälfte + Kleinhirn Bei Musikstudenten: Stirn und Schläfenlappen rechts aktiver!

Fazit (1) perfekt seinen Bedürfnissen angepasst Hören ist ein aktiver Prozess Anpassung an Hörumgebung Schutzfunktionen Frequenzselektivität Cochleaverstärker Mustererkennung

Fazit (2) Der Vorgang des Hörens ist hochkomplex Erschwerte Forschung in höheren Ebenen des auditorischen Pfades durch fehlende Kenntnis der Kodierung Völlig andere Funktionsweise als ein analytischer Ansatz eines Ingenieurs

Fazit (3) Zwischen dem Sinnesorgan und der bewussten Wahrnehmung liegt ein mächtiger neuronaler Filter

Danke für die Aufmerksamkeit!