Struktur-Funktions-Modelle von Pflanzen - Sommersemester 2010 - Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.

Slides:



Advertisements
Ähnliche Präsentationen
der Universität Oldenburg
Advertisements

der Universität Oldenburg
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Agenda Sitzung 2 für den Programmaufbau
Java: Objektorientierte Programmierung
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (13 – Offenes Hashing) Prof. Th. Ottmann.
PKJ 2005/1 Stefan Dissmann Rückblick auf 2005 Was zuletzt in 2005 vorgestellt wurde: Klassen mit Attributen, Methoden und Konstruktoren Referenzen auf.
Regelbasierte Programmierung mit XL
Regelbasierte Programmierung mit XL
Eigene Metoden (Turtle-Paket (C) Taulien 2003)
Weitere Beispiele für Verzweigung mit und ohne Turtle
Verzweigung.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
/* Fichtenmodell, W.K */ module T; module M1; module S1; module M2; module S2; module M3; module S3; module GU(float incd, int age) extends.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Artifizielle Wachstumsprozesse Winfried Kurth Günter Barczik Reinhard Hemmerling Lehrstuhl Grafische SystemeLehrstuhl Entwerfen Bauen im Bestand.
Artifizielle Wachstumsprozesse Ergänzung zu Teil 1 Winfried Kurth Günter Barczik Reinhard Hemmerling Lehrstuhl Grafische SystemeLehrstuhl Entwerfen Bauen.
Lindenmayer-Systeme: Fraktale rekursiv zeichnen
Programmiervorkurs WS 2014 Referenzdatentypen
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Strukturmodelle: Systematik, State of the Art bearbeitet von: Dr. Gerhard Buck-Sorlin Institut für Pflanzengenetik und Kulturpflanzenforschung Gatersleben.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
 Präsentation transkript:

Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik 6. Vorlesung:

zuletzt: L-System-Beispiele Verwendung von imperativem Code in XL-Programmen konditionale Regelanwendung Einbau von Texturen in Pflanzenmodelle Anlegen eines Projekts in GroIMP stochastische L-Systeme

als nächstes: stochastische Ausbreitungsmodelle (Nachtrag zum letzten Mal) kontextsensitive L-Systeme ein neuer Regeltyp: Interpretationsregeln

Erinnerung: Erzeugung einer Zufallsverteilung in der Ebene Axiom ==> D(0.5) for ((1:300)) ( [ Translate(random(0, 100), random(0, 100), 0) F(random(5, 30)) ] ); Ansicht von oben schräg von der Seite

Man teste die Beispiele sm09_b23.rgg Verbreitungsmodell (1 Art) sm09_b24.rgg Verbreitungsmodell (2 Arten) In diesen Beispielen wird die Konkurrenz noch nicht berücksichtigt. Es wird gezeigt, wie Populationsstärken in Charts während der Laufzeit der Simulation ausgeplottet werden können.

Kontextsensitivität Abfrage eines Kontexts, der vorhanden sein muss, damit eine Regel anwendbar ist Angabe des Kontexts in (*.... *) Beispiel: module A(int age); module B(super.length, super.color) extends F(length, 3, color); Axiom ==> A(0); A(t), (t B(10, 2) A(t+1); // 2 = grün A(t), (t == 5) ==> B(10, 4); // 4 = rot B(s, 2) (* B(r, 4) *) ==> B(s, 4); B(s, 4) ==> B(s, 3) [ RH(random(0, 360)) RU(30) F(30, 1, 14) ]; // 3 = blau

Man teste die Beispiele sm09_b14.rgg Verwendung eines linken Kontexts sm09_b15.rgg Verwendung eines rechten Kontexts

Interpretationsregeln Einbau einer weiteren Regelanwendung unmittelbar vor der grafischen Interpretation (ohne Wirkung auf die nächste Generation) Interpretationsregel- Anwendung Turtle-Interpretation

Beispiel: module MainBud(int x) extends Sphere(3) {{setShader(GREEN);}}; module LBud extends Sphere(2) {{setShader(RED);}}; module LMeris; module AMeris; module Flower; const float d = 30; const float crit_dist = 21; protected void init() [ Axiom ==> MainBud(10); ] public void run() { [ MainBud(x) ==> F(20, 2, 15) if (x > 0) ( RH(180) [ LMeris ] MainBud(x-1) ) else ( AMeris ); LMeris ==> RU(random(50, 70)) F(random(15, 18), 2, 14) LBud; LBud ==> RL(90) [ Flower ]; AMeris ==> Scale(1.5) RL(90) Flower; /* Flower: hier nur ein Symbol */ ] applyInterpretation(); /* Aufruf der Interpretationsregelausfuehrung (im imperativen Teil {... } !) */ } protected void interpret() /* Block mit Interpretationsregeln */ [ Flower ==> RH(30) for ((1:5)) ( RH(72) [ RL(80) F(8, 1, 9) ] ); ]

public void run() { [ Axiom ==> A; A ==> Scale(0.3333) for (int i:(-1:1)) for (int j:(-1:1)) if ((i+1)*(j+1) != 1) ( [ Translate(i, j, 0) A ] ); ] applyInterpretation(); } public void interpret() [ A ==> Box; ] weiteres Beispiel: erzeugt den sogenannten Menger-Schwamm (ein Fraktal)

public void run() { [ Axiom ==> A; A ==> Scale(0.3333) for (int i:(-1:1)) for (int j:(-1:1)) if ((i+1)*(j+1) != 1) ( [ Translate(i, j, 0) A ] ); ] applyInterpretation(); } public void interpret() [ A ==> Box; ] (a) (b)(c) A ==> Sphere(0.5); A ==> Box(0.1, 0.5, 0.1) Translate(0.1, 0.25, 0) Sphere(0.2);

was wird durch dieses Beispiel erzeugt? public void run() { [ Axiom ==> [ A(0, 0.5) D(0.7) F(60) ] A(0, 6) F(100); A(t, speed) ==> A(t+1, speed); ] applyInterpretation(); } public void interpret() [ A(t, speed) ==> RU(speed*t); ]

Hinweis: Veranstaltung zu Prozessmodellierung / Photosynthese- Grundlagen und -Messung beginnt am 1. 6., 8:15 Uhr in der Abteilung Baumphysiologie und Forstbotanik. Keine VL am ! Hausaufgabe zum 1. 6.: Lesen Sie folgende Abschnitte des Wikipedia-Eintrags zum Stichwort Photosynthese ( ): - Überblick - Die oxygene Photosynthese (1. Abschnitt) - Kohlendioxid-Assimilation - Energiebilanz - Bedeutung