Nachweismethoden der DM

Slides:



Advertisements
Ähnliche Präsentationen
Service Oriented Architectures for Remote Instrumentation
Advertisements

1 Feb 2008 Kosmologie, WS 07/08 Prof. W. de Boer 1 Vorlesung 12: Roter Faden: 1.Baryon Asymmetrie 2.Grand Unified Theories 3.Vereinheitlichung aller Kräfte.
Caren Hagner Universität Hamburg
Rencontres de Moriond Dominik Elsässer Universität Würzburg Dominik Elsässer Universität Würzburg Rencontres de Moriond Indirect Signatures.
Multi electron atoms Atoms with Z>1 contain >1 electron. This changes the atomic structure considerably because in addition to the electron-nucleus interaction,
Peter Marwedel TU Dortmund, Informatik 12
Stärken-Schwächen- Chancen-Risken Lernziele: to talk about future job possibilities to develop the ability to compare and contrast to confidently use present,
Using TopReX 4.23 – study in HEPG/generator level- by Adonis Papaikonomou for the KA-Top-Meeting 10/23/07 MC production ttop6x (anoTop central sample)
Using TopReX 4.23 – study in HEPG/generator level- by Adonis Papaikonomou for the KA-Top-Meeting 10/02/07 Simulating Problems found in Gen6 simulation.
Using TopReX 4.23 – study in HEPG/generator level- by Adonis Papaikonomou for the KA-Top-Meeting 10/09/07 Simulating Problems found in Gen6 simulation.
Nachweismethoden der DM
Gamma-Ray Space Telescope
24. April 2009 Cosmology/Supersymmetry, SS 09, Prof. W. de Boer/Prof.. Kazakov 1 Introduction Outline: 1.Basics of SM 2.Need for Supersymmetry beyond SM.
Vorlesung 8+9 Roter Faden: 1. Entstehung der Galaxien-> Materie nur
VL 13: Dunkle Materie, was ist das?
8 Feb, 2008 VL Kosmologie WS07/08, W. de Boer1 We dont know it, because we dont see it! VL 13: Dunkle Materie, was ist das? WdB, C. Sander, V. Zhukov,
Nachweismethoden der DM
VL 13: Dunkle Materie, was ist das?
NUMEX – Numerical experiments for the GME Fachhochschule Bonn-Rhein-Sieg Wolfgang Joppich PFTOOL - Precipitation forecast toolbox Semi-Lagrangian Mass-Integrating.
Wozu die Autokorrelationsfunktion?
Arnaud Cassan ( ARI / ZAH Heidelberg ) 4th Planet Formation Workshop MPIA, 1 st March 2006 Discovery of a cool 5.5 Earth-mass planet through gravitational.
Lancing: What is the future? Lutz Heinemann Profil Institute for Clinical Research, San Diego, US Profil Institut für Stoffwechselforschung, Neuss Science.
LHC, 11 Jul 2008 Kai Schweda Hadron Yield Ratios Fig.3.3 1) At RHIC: T ch = 160 ± 10 MeV B = 25 ± 5 MeV 2) S = 1. The hadronic system is thermalized.
Isospin breaking a0-f0 mixing
Three minutes presentation I ArbeitsschritteW Seminar I-Prax: Inhaltserschließung visueller Medien, Spree WS 2010/2011 Giving directions.
Hochschulteam der Agentur für Arbeit Trier Preventing the Brainware Crisis Workshop Schloss Dagstuhl Student Enrollment in Computer Science.
Institut für Wasserbau Stuttgart Geodätisches Institut Stuttgart Institut für Meteorologie und Klimaforschung IMK-IFU SPP 1257 DIRECT WATERBALANCE An interdisciplinary.
„Elastische Streuung Himmelsblau Rayleighstreuung Teilchen d
Seminar Telematiksysteme für Fernwartung und Ferndiagnose Basic Concepts in Control Theory MSc. Lei Ma 22 April, 2004.
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 SADDU June 2008 S. Noël, K.Bramstedt,
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Pointing Meeting Nov 2006 S. Noël IFE/IUP Elevation and Azimuth Jumps during.
Adjektive Endungen von Frau Templeton.
Tag um Tag, Jahr um Jahr, Tag um Tag, Jahr um Jahr, Day by day, year by year, Wenn ich durch diese Straßen geh', When I go through these streets, Seh ich.
Laurie Clarcq The purpose of language, used in communication, is to create a picture in the mind and/or the heart of another.
Machen Sie sich schlau am Beispiel Schizophrenie.
T.Ruf, N.Brook, R.Kumar, M.Meissner, S.Miglioranzi, U.Uwer D.Voong Charge Particle Multiplicity Disclaimer: Work has started only recently! I am not an.
| DC-IAP/SVC3 | © Bosch Rexroth Pneumatics GmbH This document, as well as the data, specifications and other information set forth in.
Morphology and Syntax More on sentence structure.
Analysis of Cross-Polarization Modulation in Dispersion-Managed DWDM Systems Marcus Winter, Christian-Alexander Bunge, Dario Setti, Klaus Petermann LEOS.
Wim de Boer, Karlsruhe Kosmologie VL, Einteilung der VL 1.Einführung 2.Hubblesche Gesetz 3.Antigravitation 4.Gravitation 5.Entwicklung des.
Ich möchte ein Eisberg sein. Last time … 3 icebergs Triangels Unique connections Ich möchte ein Eisberg sein
Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Compton-scattering of the cosmic background radiation off a ultrarelativsitic.
Meine Schulfächer.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
You need to use your mouse to see this presentation © Heidi Behrens.
INTAKT- Interkulturelle Berufsfelderkundungen als ausbildungsbezogene Lerneinheiten in berufsqualifizierenden Auslandspraktika DE/10/LLP-LdV/TOI/
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 K. Bramstedt, L. Amekudzi, J. Meyer IFE/IUP Tangent heights in occultation.
Verben Wiederholung Deutsch III Notizen.
Impairments in Polarization-Multiplexed DWDM Channels due to Cross- Polarization Modulation Marcus Winter Christian-Alexander Bunge Klaus Petermann Hochfrequenztechnik-Photonik.
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL Recent activities on ammonia emissions: Emission inventory Rindvieh.
4th Symposium on Lidar Atmospheric Applications
The most obvious or direct use of auch is to mean also. Ich möchte auch Gitarre lernen. Auch ich möchte Gitarre lernen. I would like to learn Guitar. Someone.
Cross-Polarization Modulation in DWDM Systems
Adjectiv Endungen Lite: Adjective following articles and pre-ceeding nouns. Colors and Clothes.
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL 95% der Ammoniakemissionen aus der Landwirtschaft Rindvieh Pflanzenbau.
Hier wird Wissen Wirklichkeit 1 Gravitational Radiation From Ultra High Energy Cosmic Rays In Models With Large Extra Dimensions Benjamin Koch ITP&FIGSS/University.
Sentence Structure Subject and verb are always together. Subject and verb are always together. Subject and verb must agree Subject and verb must agree.
Separable Verbs Turn to page R22 in your German One Book R22 is in the back of the book There are examples at the top of the page.
1 Intern | ST-IN/PRM-EU | | © Robert Bosch GmbH Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung,
1 Stevens Direct Scaling Methods and the Uniqueness Problem: Empirical Evaluation of an Axiom fundamental to Interval Scale Level.
Selectivity in the German Mobility Panel Tobias Kuhnimhof Institute for Transport Studies, University of Karlsruhe Paris, May 20th, 2005.
How to use and facilitate an OptionFinder Audience Response System.
Travel with NASA from the biggest to the smallest distance of the universe.
Data Mining Spectral Clustering Junli Zhu SS 2005.
Adjective Declension in German
FURTHER MASS SPECTROMETRY
Haline E Schendan, Meghan M Searl, Rebecca J Melrose, Chantal E Stern 
 Präsentation transkript:

Nachweismethoden der DM Gravitationslinsen Rotationskurven Indirekter Nachweis der DM ( Annihilation der DM in Materie-Antimaterie) Direkter Nachweis der DM ( Elastische Streuung an Kernen)

Gravitationslinsen ART: Die Ausbreitung von Licht ändert sich beim Durchgang durch ein Gravitationsfeld

Gravitationslinsen

Colliding Clusters Shed Light on Dark Matter Blau: dunkle Materie aus Gravitations- potential dunkel Rot: sichtbares Gas Observations with bullet cluster: Chandra X-ray telescope shows distribution of hot gas Hubble Space Telescope and others show distribution of dark matter from weak gravitational lensing Distributions are clearly different after collision-> dark matter is weakly interacting!

Simulation der “Colliding Clusters” http://www.sciam.com/ August 22, 2006

Discovery of DM in 1933 Zwicky, Fritz (1898-1974 Center of the Coma Cluster by Hubble space telescope ©Dubinski Zwicky notes in 1933 that outlying galaxies in Coma cluster moving much faster than mass calculated for the visible galaxies would indicate DM attracts galaxies with more force-> higher speed. But still bound!

Dunkle Materie im Universum Die Rotationskurven von Spiralgalaxien sind weitgehend flach, während die leuchtende Materie eine abfallende Kurve erwarten lässt. Erklärung: dunkle Materie. Spiralgalaxien bestehen aus einem zentralen Klumpen und einer sehr dünnen Scheibe leuchtender Materie, welche von einem nahezu sphährischen, sehr ausgedehnten Halo umgeben ist.

Messung der Masse durch Newtons Gravitationsgesetz v=ωr v1/r mv2/r=GmM/r2 Milchstraße Cygnus Perseus Orion Sagittarius Scutum Crux Norma Sun (8 kpc from center)

Do we have Dark Matter in our Galaxy? Rotationcurve Solarsystem rotation curve Milky Way 1/r

Estimate of DM density DM density falls off like 1/r2 for v=const. Averaged DM density “1 WIMP/coffee cup” (for 100 GeV WIMP)

Virialsatz Für Ensemble wechselwirkender Systeme im mechanischen Gleichgewicht gilt Für N Teilchen, also N(N-1)/2 Teilchenpaaren Für N groß: und Erwarte also für ´Gas` gravitativ wechselwirkender Teilchen M  r ! Aber dann: vrot2M/r = konst -> flache Rotationskurve

Expansion rate of universe determines WIMP annihilation cross section T>>M: f+f->M+M; M+M->f+f T<M: M+M->f+f T=M/22: M decoupled, stable density (wenn Annihilationrate  Expansions- rate, i.e. =<v>n(xfr)  H(xfr) !) Thermal equilibrium abundance Actual abundance Comoving number density WMAP -> h2=0.1130.009 -> <v>=2.10-26 cm3/s DM increases in Galaxies: 1 WIMP/coffee cup 105 <ρ>. DMA (ρ2) restarts again.. Annihilation into lighter particles, like quarks and leptons -> 0’s -> Gammas! T=M/22 10-9s Only assumption in this analysis: WIMP = THERMAL RELIC! x=m/T Gary Steigmann/ Jungmann et al.

What is known about Dark Matter? 95% of the energy of the Universe is non-baryonic 23% in the form of Cold Dark Matter Dark Matter enhanced in Galaxies and Clusters of Galaxies but DM widely distributed in halo-> DM must consist of weakly interacting and massive particles -> WIMP’s Annihilation with <σv>=2.10-26 cm3/s, if thermal relic From CMB + SN1a + surveys If it is not dark It does not matter DM halo profile of galaxy cluster from weak lensing

Kandidaten der DM † † ? ? Problem: max. 4% der Gesamtenergie des Univ. in Baryonen nach CMB und BBN. Sichtbar nur 0.5%, d.h. 3.5% in obigen Kandidaten möglich. Rest der DM muss aus nicht-baryonischen Materie bestehen. Probleme: ν < 0.7% aus WMAP Daten kombiniert mit Dichtekorrelationen der Galaxien. Für kosmische Strings keine Vorhersagekraft. Abweichungen von Newtons Gravitationsgesetz nicht plausibel. WIMPS ergeben nach Virialtheorem flache Rotationskurven. In Supersymmetrie sind die WIMPS Supersymmetrische Partner der CMB d.h. Spin ½ Photonen (Photinos genannt).

p+e <->H electromagnetic x-section Simple 3-Component Galaxy: p+e+Wimps Interactions: p+e <->H electromagnetic x-section p+p -> X strong x-section: 10-25 cm2 p+W -> p+W x-section:<10-43 cm2 (direct DM searches) W+W -> X x-section: 10-33 cm2 (Hubble expansion) These cross sections are exactly order of magnitude predicted by SUSY!

Example of DM annihilation (SUSY)  f Z W  0 ~ A ≈37 gammas Dominant  +   A  b bbar quark pair Sum of diagrams should yield <σv>=2.10-26 cm3/s to get correct relic density Quark fragmentation known! Hence spectra of positrons, gammas and antiprotons known! Relative amount of ,p,e+ known as well.

Annihilation products from dark matter annihilation: Gamma rays Indirect Dark Matter Searches in the Light of ATIC, FERMI, EGRET and PAMELA Annihilation products from dark matter annihilation: Gamma rays (EGRET, FERMI) Positrons (PAMELA) Antiprotons (PAMELA) e+ + e- (ATIC, FERMI, HESS, PAMELA) Neutrinos (Icecube, no results yet) e-, p drown in cosmic rays?

Conclusion sofar IF DM particles are thermal relics from early universe they can annihilate with cross section as large as <v>=2.10-26 cm3/s which implies an enormous rate of gamma rays from π0 decays (produced in quark fragmentation) (Galaxy=1040 higher rate than any accelerator) Expect significant fraction of energetic Galactic gamma rays to come from DMA in this case. Remaining ones from pCR+pGAS-> π0+X , π0->2γ (+some IC+brems) This means: Galactic gamma rays have 2 components with a shape KNOWN from the 2 BEST studied reactions in accelerators: background known from fixed target exp. DMA known from e+e- annihilation (LEP)

Anmerkungen zur indirekten Suche nach DM Gamma rays: keine Ablenkung durch das Galaktische Magnetfeld zeigen daher in Richtung der Quelle kaum Abschwächung in der Galaxie bei GeV Photonen Astrophysikalische Quellen als Punktquellen erkennbar und können daher subtrahiert werden Untergrund hat anderes (aber bekanntes) Spektrum als DMA Signal. Durch gleichzeitiges Fitten von Form des Spektrums für Signal und Untergrund können beide Beiträge direkt aus den Daten bestimmt werden, wenn man die Normierung als freier Fitparameter behandelt (data driven analysis) Geladene Teilchen: Ablenkung durch das Galaktische Magnetfeld, sie zeigen daher nicht in Richtung der Quelle Wahrscheinlichkeit, dass z.B. Antiproton aus DMA im Detektor ankommt, stark abhängig vom Propagationsmodell Keine Trennung von astrophysikalischen Punktquellen möglich

man Untergrund? Woher erwartet Quarks from WIMPS in protons Background from nuclear interactions (mainly p+p-> π0 + X ->  + X inverse Compton scattering (e-+  -> e- + ) Bremsstrahlung (e- + N -> e- +  + N) Shape of background KNOWN if Cosmic Ray spectra of p and e- known

Energy loss times of electrons and nuclei = 1/E dE/dt univ Protons diffuse for long times without loosing energy! If centre would have harder spectrum, then hard to explain why excess in outer galaxy has SAME shape (can be fitted with same WIMP mass!)

Usual astrophysicist’s search strategies Particle physicist: get rid of model dependence by DATA DRIVEN calibration

EGRET on CGRO (Compton Gamma Ray Observ EGRET on CGRO (Compton Gamma Ray Observ.) Data publicly available from NASA archive Instrumental parameters: Energy range: 0.02-30 GeV Energy resolution: ~20% Effective area: 1500 cm2 Angular resol.: <0.50 Data taking: 1991-1994 Main results: Catalogue of point sources Excess in diffuse gamma rays

Two results from EGRET paper Enhancement in ringlike Called “Cosmic enhancement Factor” Excess Enhancement in ringlike structure at 13-16 kpc 1 10 Eγ GeV

Untergrund + DM Annihilation beschreiben Daten W. de Boer et al., 2005

Analyse der EGRET Daten in 6 Himmelsrichtungen A: inner Galaxy C: outer Galaxy B: outer disc Total 2 for all regions :28/36  Prob.= 0.8 Excess above background > 10σ. D: low latitude E: intermediate lat. F: galactic poles A: inner Galaxy (l=±300, |b|<50) B: Galactic plane avoiding A C: Outer Galaxy D: low latitude (10-200) E: intermediate lat. (20-600) F: Galactic poles (60-900)

EGRET Excess predicts shape of rotation curve! Outer Ring Inner Ring bulge totalDM 1/r2 halo disk Rotation Curve Normalize to solar velocity of 220 km/s R0=8.3 kpc R0=7.0 v R/R0 Inner rotation curve Outer RC Black hole at centre: R0=8.00.4 kpc Sofue &Honma Note 1: Absolute value of rotation curve depends on distances. But chance of slope can ONLY be explained by ringlike structure. Note 2: fact that shape of DM halo can describe shape of RC implies that EGRET excess has exactly right intensity to deliver grav. potential!

Gas flaring in the Milky Way no ring with ring P M W Kalberla, L Dedes, J Kerp and U Haud, http://arxiv.org/abs/0704.3925 Gas flaring needs EGRET ring with mass of 2.1010M☉!

Inner Ring coincides with ring of dust and H2 -> gravitational potential well! H2 4 kpc coincides with ring of neutral hydrogen molecules! H+H->H2 in presence of dust-> grav. potential well at 4-5 kpc. Enhancement of inner (outer) ring over 1/r2 profile 6 (8). Mass in rings 0.3 (3)% of total DM

FERMI measures GeV gamma rays + electrons 

Diffuse gamma rays from FERMI Published FERMI data on VELA pulsar: agrees within errors with EGRET at 3 GEV astro-ph/0812.2960 20% EGRET 100% Why diffuse spectrum disagrees 100% with EGRET at 3 GeV while VELA spectrum agrees with EGRET at 3 GeV within 20%?

Indirect Dark Matter Searches using charged particles Annihilation products from dark matter annihilation: Gamma rays (EGRET, FERMI) Positrons (PAMELA) Antiprotons (PAMELA) e+ + e- (ATIC, FERMI, HESS, PAMELA) Neutrinos (Icecube, no results yet) e-, p drown in cosmic rays?

The PAMELA Satellite Experiment (launched July 2006) Resurs Dk1 Satellite Transition Radiation Detector (removed for tech.reasons) Time of Flight Counters Silicon Tracker and Permanent Magnet Si-W Electromagnetic Calorimeter Neutron Detector Anticoincidence Shield 1.2 m 20.5 cm2sr ~450 kg ~10 T Bottom Scintillator 300 - 600 km

PAMELA, positron and antiproton measurements Positron fraction Antiproton/proton ratio Galprop Pamela Nature 458:60,2009,arXiv:0810.4995 (O. Adriani et. al., PRL (2009)[0810.4994]) +prelim. new data, Boezio, Pamela-WS 2009 Positrons: excess Antiprotons: NO excess

ATIC Balloon experiment, Nature 2008 Kaluza-Klein DM decays to lepton pairs ->peak in electron spectrum with tail from energy losses KK x-section  Y4 so mainly decay to leptons and u-quarks Baltz, Hooper, hep-ph/0411053 Hooper, Zurek, 0902.0593

FERMI electron spectrum: NO BUMP at 600 GeV Simulating the LAT response to a spectrum with an “ATIC-like” feature: Alexander Moiseev Pamela workshop May 11, 2009 This demonstrates that the Fermi LAT would have been able to reveal “ATIC-like” spectral feature with high confidence if it were there. Energy resolution is not an issue with such a wide feature

Cherenkov telescopes measure TeV gamma rays HESS MAGIC

HESS, May 2009 Electron spectrum falls off above 1 TeV

Interpretations for charged particle anomalies Many possibilities: Background from hadronic showers with large electromagnetic component -> ap->0 astrophysical sources pulsars -> apulsar positron acceleration in SNR -> asec locality of sources -> aSNR dark matter annihilation -> aDMA leptophilic? bound states? Kaluza-Klein

Truth? Unitarity must be fulfilled. However, will now Depends on whom you ask! My assumption: |Data>= ap->0 |Background> + aDMA |DMA> + asec |SNR> + alocal |SNR(x)> + apulsar |Pulsar> Unitarity must be fulfilled. However, will now show that each component has enough uncertainty to saturate observations

aDMA:DM interpretation of FERMI e-data TeV DM decaying to low scale particle, which can only decay leptonically TeV DM forms bound state to get large boost factor via Sommerfeld enhancement Models e.g. by Arkani-Hamed,Finkbeiner,Slatyer,Weiner arXiv:0810.0713 Nomura and Thaler, arXiv:0810.5397 Fit by Bergstrom et al.arXiv:0905.0333

e loose energy rapidly (dE/dt  E2), hence they are “local” aloc :3-component e- sources: spiral arm, disc, local Shaviv et al., arXiv:0902.0376,2009 spiral arm near sources positrons disc e loose energy rapidly (dE/dt  E2), hence they are “local” 3-component structure explains e-spectrum, Pamela/Fermi anomalies and why nothing in pbar It can work!

What about Supersymmetry? Assume mSUGRA 5 parameters: m0, m1/2, tanb, A, sign μ

Example of DM annihilation (SUSY)  f Z W  0 ~ A ≈37 gammas Dominant  +   A  b bbar quark pair Sum of diagrams should yield <σv>=2.10-26 cm3/s to get correct relic density Quark fragmentation known! Hence spectra of positrons, gammas and antiprotons known! Relative amount of ,p,e+ known as well.

Expected SUSY mass spectra in mSUGRA for EGRET WIMP mass of 60 GeV mSUGRA: common masses m0 and m1/2 for spin 0 and spin ½ particles

Annihilation cross sections in m0-m1/2 plane (μ > 0, A0=0) tan=5 tan=50 t t 10-27 bb t t 10-24 bb EGRET WMAP  WW  WW For WMAP x-section of <v>2.10-26 cm3/s one needs large tanβ

Mt/Mb = tan  Mt2=(4)2Yt v22 Mb2=(4)2Yb v12

EWSB requirement leads to small MA at large tan ß m12 Yb tan ß = 20 tan ß = 51 m12 Yb m22 Yt m22 Yt EWSB: MZ2/2=(m12-m22 tan2ß)/ (tan2ß-1) -m22 for large tan ß Pseudoscalar Higgs: MA2 = m12+m22 becomes very small if YtYb at large tb (Mt2/Mb2) = (Yt v2 sin2ß)/(Yb v2 cos2ß)=(Yt/Yb) tan2ß tan ß  53 for YtYb

Momentum dependence of annihilation cross section v S-wave P-wave decoupling ns after BB M=60 GeV M=50 GeV

Expected SUSY mass spectra in mSUGRA for EGRET WIMP mass of 60 GeV mSUGRA: common masses m0 and m1/2 for spin 0 and spin ½ particles

Gauge unification perfect with SUSY spectrum from EGRET SM SUSY Update from Amaldi, dB, Fürstenau, PLB 260 1991 NO FREE PARAMETER WdB, C. Sander,PLB585(2004). e-Print: hep-ph/0307049 With SUSY spectrum from EGRET + WMAP data and start values of couplings from final LEP data perfect gauge coupling unification! Also b->s and g-2 agree within 2σ with SUSY spectrum from EGRET

Coannihilations vs selfannihilation of DM If it happens that other SUSY particles are around at the freeze-out time, they may coannihilate with DM. E.g. Stau + Neutralino -> tau Chargino + Neutralino -> W However, this requires extreme fine tuning of masses, since number density drops exponentially with mass. But more serious: coannihilaition will cause excessive boostfactors Since  anni = coanni + selfanni must yield <v>=10-26 cm3/s. This means if coannihilation dominates, selfannihilation  0 In present universe only selfannihilation can happen, since only lightest neutralino stable, other SUSY particles decayed, so no coannihilation. If selfannihilation x-section 0, no indirect detection.

0 Direct Detection of WIMPs WIMPs elastically scatter off nuclei => nuclear recoils Measure recoil energy spectrum in target 0

Direct Detection of WIMPs

Direct Dark Matter Detection CRESST ROSEBUD CUORICINO Phonons CDMS EDELWEISS CRESST II ROSEBUD ER HDMS GENIUS IGEX MAJORANA DRIFT (TPC) DAMA ZEPLIN I UKDM NaI LIBRA Ionization Scintillation XENON ZEPLIN II,III,IV Large spread of technologies: varies the systematic errors, important if positive signal! All techniques have equally aggressive projections for future performance But different methods for improving sensitivity L. Baudis, CAPP2003

Der Edelweiss Detektor Messprinzip eines Halbleiter-Bolometers. Kommt es zu einem elastischen Stoß eines WIMP-Teilchens mit einem Atomkern des Germanium-Kristalls führt der Kern-Rückstoß zu einer Temperaturerhöhung des Kristalls, die über ein Thermometer registriert wird. Gleichzeitig ionisiert der Ge-Kern das Material in seiner Umgebung, was zu einem Ladungssignal führt, das an den Oberflächenelektroden ausgelesen wird.

Der Edelweiss Detektor

(in Frejus-Tunnel in französichen Alpen) Edelweiss Experiment (in Frejus-Tunnel in französichen Alpen)

Schnelle (großflächige) DM-Suche mit Tieftemperatur-Kalorimetern / CDMS Schnelle (großflächige) Auslese von Phononen Si oder Ge Einkristall Array von Phasenübergangs- Thermometern

Kalibration Kalibration eines Ge-Bolometers durch Bestrahlung mit einer 252Cf-Neutronenquelle: Deutlich erkennbar sind zwei Ereignispopulationen, die durch das Verhältnis von Ionisations- zu Rückstoß-Energie separiert werden können. Die auf das Ionisationssignal angelegte Energieschwelle (grüne Kurve) entspricht einer Rückstoßenergie von 3.5keV. Die Bänder beschreiben die Bereiche, in denen 90% der Elektron- bzw. Kern-Rückstöße liegen.

Der Edelweiss Detektor

Der XENON 10 Detektor

Der XENON 10 Detektor

Der XENON 10 Detektor

Der XENON 10 Detektor

Comparison with direct searches CDMS Note: N90%CL=n <90%CLv> To get 90%CL one has to assume v and n : v assumed Maxwellian and NO corotation of DM halo n : assume DM mass from rotation curve to be completely diffuse. Theory: x-section can be order of magnitude lower due to matrix element uncertainties Conclusion: can easily move up exp. limits by order of magn. and move down theory by order of magnitude.

Large uncertainties in direct scattering x-section Ellis, Olive, Savage, arXiv:0801.3656

Annual Modulation as unique signature? Annual modulation:   v, so signal in June larger than in December due to motion of earth around sun (5-9% effect). June v0 galactic center Sun 230 km/s Dec. June Dec ±2% Background WIMP Signal L. Baudis, CAPP2003

DAMA/NaI 1 to 7: Riv.N.Cim 26 n.1. (2003) 1-73 Schael, EPS2003 DAMA NaI-1 to 4: 58k kg.day DAMA NaI-5 to 7: 50k kg.day Full substitution of electronics and DAQ in 2000 The data favor the presence of a modulated signal with the proper features at the 6.3 σ C.L. Running conditions stable at level < 1%

Warum muss DM kalt sein, d.h. nicht-relativistisch? Antwort: Aus Galaxien- Dichteverteilung!

DM bildet Filamente erhöhter Dichte mit Galaxien und Leerräumen dazwischen Simulation (jeder Punkt stellt eine Galaxie dar)  Steinmeitz, Potsdam

Kriterium für Gravitationskollaps: Jeans Masse und Jeans Länge Gravitationskollaps einer Dichtefluktuation, wenn Expansionsrate 1/tExp  H  G langsamer als die Kontraktionsrate 1/tKon  vS / λJ ist. Oder die Jeanslänge (nach Jeans), d.h. die Länge einer Dichtefluktuation, die unter Einfluß der Gravitation wachsen kann, ist von der Größenordnung λJ = vs/ G (vS ist Schallgeschwindigkeit) (exakte hydrodynamische Rechnung gibt noch Faktor  größeren Wert) Nur in Volumen mit Radius λJ /2 Gravitationskollaps. Dies entspricht eine Jeansmasse von MJ = 4/3 (λJ/2)3  = (5/2 vs3 ) / (6G3/2)

Abfall der Schallgeschwindigkeit nach tr wenn Photonkoppelung wegfällt Die Schallgeschwindigkeit fällt a) für DM wenn die Strahlungsdichte nicht mehr dominiert und b) für Baryonen nach der Rekombination um viele Größendordnungen (von c/3 für ein relat. Plasma auf 5T/3mp für Wasserstoff) D.h. DF die vor Rekombination stabil waren, kollabieren durch Gravitation. Galaxienbildung in viel kleineren Bereichen möglich, wenn vS klein!

Evolution of the universe Early Universe Present Universe The Cosmic screen DT / T ~ Dr / r

Jeans Masse vs. Schallgeschwindigkeit

Top-down versus Bottom-up Kleine Jeanslänge (non-relativistische Materie, Z.B. Neutralinos der Supersymmetrie) Große Jeanslänge (relativistische Materie, Z.B. Neutrinos mit kleiner Masse)

HDM (relativistisch  vS =c/3) versus CDM

Oder für gemischte DM Szenarien … CDM WarmDM C+HDM Colombi, Dodelson, & Widrow 1995 Structure is smoothed out in model with light neutrinos

Millenium Simulation

Dunkle Materie, was wissen wir? Was wissen wir über Dunkle Materie? massive Teilchen 23% der Energie des Universums schwache Wechselwirkung mit Materie Annihilation mit <σv>=2.10-26 cm3/s Annihilation in Quarkpaare -> Überschuss in galaktischen Gammastrahlen beobachtet? From CMB + SN1a LHC Experimente werden ab 2010 klären ob dies stimmt.