Nachweismethoden der DM

Slides:



Advertisements
Ähnliche Präsentationen
Kosmologie heute Vikariats-Regionalseminare Enkirch und „Nord“
Advertisements

Dunkle Materie Dunkle Energie
Vorlesung 4: Roter Faden: Friedmann-Lemaitre Feldgleichungen
Kosmologie mit Supernovae 1a
Dunkle Materie im Labor
Rencontres de Moriond Dominik Elsässer Universität Würzburg Dominik Elsässer Universität Würzburg Rencontres de Moriond Indirect Signatures.
Kosmologie: Versuch eines Überblicks
Die Entdeckung Dunkler Materie
Vorlesung 5: Roter Faden: 1. Zeitentwicklung des Univ. (nach ART)
Vorlesung 5: Roter Faden: 1. Temperaturentwicklung des Universums
Supersymmetrischer Partner der CMB?
Vorlesung 8 Roter Faden: 1. Entstehung der Galaxien-> Materie nur
Vorlesung 12: Roter Faden: Grand Unified Theories Supersymmetrie
Experimentelle Teilchenphysik und Kosmologie
Die Urknalltheorie Einleitung Was besagt die Theorie?
Gamma-Ray Space Telescope
24. April 2009 Cosmology/Supersymmetry, SS 09, Prof. W. de Boer/Prof.. Kazakov 1 Introduction Outline: 1.Basics of SM 2.Need for Supersymmetry beyond SM.
Vorlesung 9+10: Roter Faden: 1. Neutrino Oszillationen-> Neutrino Massen 2. Neutrino Hintergrundstrahlung -> DM? Universum besteht aus: Hintergrundstrahlung:
Dunkle Materie / Dunkle Energie
Xenon 10 Einführung: Xenon10: Xenon100: Xenon1000: -Dunkle Materie
Vorlesung 3: Roter Faden: Wiederholung Abstoßende Gravitation
Wim de Boer, KarlsruheKosmologie VL, Vorlesung 8 Roter Faden: 1. Entstehung der Galaxien-> Materie nur 30% der Gesamtenergie 2. Galaxienstruktur->
18 Jan 2008 Kosmologie, WS07/08, Prof. W. de Boer 1 Vorlesung 10: Roter Faden: 1.Neutrino Hintergrundstrahlung 2. Neutrino Oszillationen-> Neutrino Massen.
Vorlesung 9: Roter Faden: 1. Neutrino Oszillationen-> Neutrino Massen 2. Neutrino Hintergrundstrahlung -> DM? Universum besteht aus: Hintergrundstrahlung:
Vorlesung 4: Roter Faden: Friedmann-Lemaitre Feldgleichungen
VL 13: Dunkle Materie, was ist das?
16 Jan 2009 Kosmologie, WS08/09, Prof. W. de Boer 1 Vorlesung 10: Roter Faden: 1.Neutrino Hintergrundstrahlung -> DM? 2. Neutrino Oszillationen-> Neutrino.
8 Feb, 2008 VL Kosmologie WS07/08, W. de Boer1 We dont know it, because we dont see it! VL 13: Dunkle Materie, was ist das? WdB, C. Sander, V. Zhukov,
Nachweismethoden der DM
Gliederung Was ist SUSY Motivation für SUSY
30 Jan Kosmologie, WS 08/09 Prof. W. de Boer 1 Vorlesung 12: Roter Faden: 1.Grand Unified Theories 2.Vereinheitlichung aller Kräfte 3.Baryon Asymmetrie.
Plädoyer für ein modifiziertes Kraftgesetz
Kilian Leßmeier Universität Bielefeld
G. Flügge, T. Hebbeker, K.Hoepfner, J. Mnich, W. Wallraff
Elementarteilchenphysik/Astroteilchenphysik Seminarthemen Organisation
Grundlagen & Experimentelle Suche!
Elementarteilchen-physik
Dunkle Materie Dunkle Materie von Hendrik Glowatzki.
High Energy Stereoscopic System (H.E.S.S.)
Humboldt-Universität zu Berlin, WS 2012/13
H.E.S.S., VERITAS, CTA Quellen der kosmischen Strahlung
H.E.S.S., MAGIC, VERITAS  CTA
Kathrin Egberts Max-Planck-Institut für Kernphysik, Heidelberg
Astronomiefreifach HS 2002/2003 Stefan Leuthold
Wim de Boer, KarlsruheKosmologie VL, Vorlesung 12: Roter Faden: 1.Grand Unified Theories 2.Supersymmetrie 3.Vereinheitlichung aller Kräfte.
Sternenfenster Licht vom Anfang der Welt
Wim de Boer, Karlsruhe Kosmologie VL, Einteilung der VL 1.Einführung 2.Hubblesche Gesetz 3.Antigravitation 4.Gravitation 5.Entwicklung des.
Dunkle Materie und dunkle Energie
Die „dunkle“ Seite der Kosmologie
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Fernsehschüssel, womit man
Die Dichte des Universums und die Dunkle Materie Teil 2
1. Physik der Elementarteilchen.
WYP 2005 European Masterclass Das Standardmodell Standardmodell der Elementarteilchenphysik.
Die kosmische Hintergrundstrahlung
Travel with NASA from the biggest to the smallest distance of the universe.
Dunkle Mächte im Weltall
Pierre Auger Observatory. Pierre Auger( ) Was a nuclear physics and cosmic ray physics. Made cosmic ray experiments on the Jungfraujoch Discovery.
Standardmodell. 224 Was wissen wir bisher? Nukleonen bestehen aus (3) spin ½ Teilchen mit relativ geringer Masse.
RC Bregenz; 22. April 2014 Amand Fäßler Können wir den Urknall heute noch sehen?
Kapitel 2 Grammar INDEX 1.Subjects & Verbs 2.Conjugation of Verbs 3.Subject Verb Agreement 4.Person and Number 5.Present Tense 6.Word Order: Position of.
Eine kleine Einführung
On the case of German has 4 cases NOMINATIVE ACCUSATIVE GENITIVE DATIVE.
Der Urknall und seine Teilchen
Dark Matter von Michel Meyer.
 Präsentation transkript:

Nachweismethoden der DM Gravitationslinsen Rotationskurven Direkter Nachweis der DM ( Elastische Streuung an Kernen) Indirekter Nachweis der DM ( Annihilation der DM in Materie-Antimaterie)

Gravitationslinsen ART: Die Ausbreitung von Licht ändert sich beim Durchgang durch ein Gravitationsfeld

Gravitationslinsen

Colliding Clusters Shed Light on Dark Matter Blau: dunkle Materie aus Gravitations- potential dunkel Rot: sichtbares Gas Observations with bullet cluster: Chandra X-ray telescope shows distribution of hot gas Hubble Space Telescope and others show distribution of dark matter from weak gravitational lensing Distributions are clearly different after collision-> dark matter is weakly interacting!

Simulation der “Colliding Clusters” http://www.sciam.com/ August 22, 2006

Discovery of DM in 1933 Zwicky, Fritz (1898-1974 Center of the Coma Cluster by Hubble space telescope ©Dubinski Zwicky notes in 1933 that outlying galaxies in Coma cluster moving much faster than mass calculated for the visible galaxies would indicate DM attracts galaxies with more force-> higher speed. But still bound! Spherical bastard

Dunkle Materie im Universum Die Rotationskurven von Spiralgalaxien sind weitgehend flach, während die leuchtende Materie eine abfallende Kurve erwarten lässt. Erklärung: dunkle Materie. Spiralgalaxien bestehen aus einem zentralen Klumpen und einer sehr dünnen Scheibe leuchtender Materie, welche von einem nahezu sphährischen, sehr ausgedehnten Halo umgeben ist.

Messung der Masse durch Newtons Gravitationsgesetz v=ωr v1/r mv2/r=GmM/r2 Milchstraße Cygnus Perseus Orion Sagittarius Scutum Crux Norma Sun (8 kpc from center)

Do we have Dark Matter in our Galaxy? Rotationcurve Solarsystem rotation curve Milky Way 1/r

Estimate of DM density DM density falls off like 1/r2 for v=const. Averaged DM density “1 WIMP/coffee cup” (for 100 GeV WIMP)

Virialsatz Für Ensemble wechselwirkender Systeme im mechanischen Gleichgewicht gilt Für N Galaxien also N(N-1)/2 Teilchenpaaren Für N groß: und Erwarte also für ´Gas` gravitativ wechselwirkender Teilchen M  r ! Aber dann v2M/r = konst -> flat rot. curve

Kandidaten der DM † † ? ? Problem: max. 4% der Gesamtenergie des Univ. in Baryonen nach CMB und BBN. Sichtbar nur 0.5%, d.h. 3.5% in obigen Kandidaten möglich. Rest der DM muss aus nicht-baryonischen Materie bestehen. Probleme: ν < 0.7% aus WMAP Daten kombiniert mit Dichtekorrelationen der Galaxien. Für kosmische Strings keine Vorhersagekraft. Abweichungen von Newtons Gravitationsgesetz nicht plausibel. WIMPS ergeben nach Virialtheorem flache Rotationskurven. In Supersymmetrie sind die WIMPS Supersymmetrische Partner der CMB d.h. Spin ½ Photonen (Photinos genannt).

What is known about Dark Matter? 95% of the energy of the Universe is non-baryonic 23% in the form of Cold Dark Matter Dark Matter enhanced in Galaxies and Clusters of Galaxies but DM widely distributed in halo-> DM must consist of weakly interacting and massive particles -> WIMP’s Annihilation with <σv>=2.10-26 cm3/s, if thermal relic From CMB + SN1a + surveys If it is not dark It does not matter DM halo profile of galaxy cluster from weak lensing

Thermische Geschichte der WIMPS T>>M: f+f->M+M; M+M->f+f T<M: M+M->f+f T=M/22: M decoupled, stable density (wenn Annihilationrate  Expansions- rate, i.e. =<v>n(xfr)  H(xfr) !) Thermal equilibrium abundance Actual abundance Comoving number density WMAP -> h2=0.1130.009 -> <v>=2.10-26 cm3/s DM nimmt wieder zu in Galaxien: 1 WIMP/Kaffeetasse 105 <ρ>. DMA (ρ2) fängt wieder an. Jungmann,Kamionkowski, Griest, PR 1995 Annihilation in leichtere Teilchen, wie Quarks und Leptonen -> 0’s -> Gammas! T=M/22 Einzige Annahme: WIMP = thermisches Relikt, d.h. im thermischen Bad des frühen Universums erzeugt. x=m/T

Indirect Dark Matter Searches Annihilation products from dark matter annihilation: Gamma rays (EGRET, FERMI) Positrons (PAMELA) Antiprotons (PAMELA) e+ + e- (ATIC, FERMI, HESS, PAMELA) Neutrinos (Icecube, no results yet) e-, p drown in cosmic rays?

Neutralino Annihilation channels

Neutralino-Quark elastische Streuung Spin independent Spin dependent Wirkungsquerschnitte sehr klein, weil Higgs nur an Masse koppelt, aber u,d Quarks praktisch keine Masse haben. Sehr empfindlich für s-Quark Anteil im Nukleon. Squark Austausch sehr klein, wenn Squark schwer Z-Austausch klein, wenn Neutralino hauptsächlich Bino ist (Bino koppelt nur an elektrische Ladung) Zusätzlich geringer Impulsübertrag bei Streuung (weit von Masse des ausgetauschten Teilchens) -> Unterdrückung Resultat: (N) 10 Größenordnungen kleiner als () (Annihilation)

Direkter Nachweis von WIMPs Wir gehen davon aus, dass DM Neutralino oder WIMP ist. Es ist kalte DM, d.h. Impuls<<Masse (oder E2=p2+m2m2, da p=mv mit v  10-3 c und m  100 GeV Geschwindigkeitsverteilung der WIMPs in einem Gravitationsfeld folgt wie bei Gas in der Atmosphäre Maxwell-Boltzmann-Verteilung  e-Ekin/kT mit häufigster Wert v=270 km/h χ ER ~ Ekin (1 - cos) Neutralino kann wegen R-Paritätserhaltung NUR elastische Streuung an Kernen durchführen Streuung von nicht-relativ. Teilchen meist koherent, d.h. Wellenlänge des einlaufenden Teilchens hat de Broglie Wellenlänge =h/p größer als Kernradius, so es kann einzelne Kerne nicht auflösen und Rückstoß wird an den gesamten Kern abgegeben. Wirkungs- querschnitt  A2 (A= Anzahl der Nukleonen)

Principles of WIMP detection Elastic scattering of a WIMP on a nucleus inside a detector The recoil energy of a nucleus with mass For    This recoil can be detected in some ways : Electric charges released (ionization detector) Flashes of light produced (scintillation detector) Vibrations produced (phonon detector)

Direkter Nachweis von WIMPs Berechnung des Streuwirkungsquerschnitt  an einem Kern kompliziert: Koherente Streuung am ganzen Kern meistens dominant, aber bei Streuung kann auch Drehimpuls eine Rolle spielen Dann wird  abhängig vom Spin S der Kerne im Detektormaterial. Spin S ist gegeben durch Differenz der Nukleonen mit Spin up und Spin down. Koherenz geht verloren bei Stößen mit hohem Impuls-übertrag q, also wenn die Wellenlänge klein gegenüber Kernradius R ist oder Kohärenzbedingung q · R « 1 Impulstransfer q = A ·10-3GeV Kernradius R~ 1.14 fm · A⅓ R ~ 7 GeV-1· A⅓

Direkter Nachweis von WIMPs Koherenzbedingung meistens nur erfüllt für Kerne bis A=50, d.h. perfekt für Neutralinomassen von ca. 50 GeV, denn bei gleicher Kern und WIMP Masse wird q max, weil dann reduzierte Masse = M· MN /(MN + M) maximal wird. Wenn Koherenzbedingung nicht erfüllt, dann Kernmassenverteilung wichtig, wird beschrieben durch Formfaktor (Fouriertransformierte der Massenverteilung) Bei sehr leichten Kernen wird Verstärkung durch Koherenz der Streuung  A2 gering und spinabh. Streuung wird wichtig

Neutralino-Quark elastic scattering Effective Lagrangian scalar interaction spin-dep. interaction The other terms are velocity-dependent contributions and can be neglected in the non-relativistic limit for the direct detection. The axial vector currents are proportional to spin operators in the non-relativistic limit.

Direkter Nachweis von WIMPs

Direct detection event rates Jodi Cooley, SMU, CDMS Collaboration

Detection challenges

Background Rejection

Shielding Underground +

Direct Dark Matter Detection CRESST ROSEBUD CUORICINO Phonons CDMS EDELWEISS CRESST II ROSEBUD ER HDMS GENIUS IGEX MAJORANA DRIFT (TPC) DAMA ZEPLIN I UKDM NaI LIBRA Ionization Scintillation XENON ZEPLIN II,III,IV Large spread of technologies: varies the systematic errors, important if positive signal! All techniques have equally aggressive projections for future performance But different methods for improving sensitivity L. Baudis

WIMP Searches Worldwide

Diskutiere nur 4 Beispiele: Edelweiss und CDMS (Halbleiterdetektoren: Ionisation und Wärme) DAMA/Libra (Szintillator) XENON (Flüssigkeit: Ionisation und Szintillation)

Der Edelweiss Detektor Messprinzip eines Halbleiter-Bolometers. Kommt es zu einem elastischen Stoß eines WIMP-Teilchens mit einem Atomkern des Germanium-Kristalls führt der Kern-Rückstoß zu einer Temperaturerhöhung des Kristalls, die über ein Thermometer registriert wird. Gleichzeitig ionisiert der Ge-Kern das Material in seiner Umgebung, was zu einem Ladungssignal führt, das an den Oberflächenelektroden ausgelesen wird.

Schnelle (großflächige) DM-Suche mit Tieftemperatur-Kalorimetern / CDMS Schnelle (großflächige) Auslese von Phononen Si oder Ge Einkristall Array von Phasenübergangs- Thermometern

Kalibration Kalibration eines Ge-Bolometers durch Bestrahlung mit einer 252Cf-Neutronenquelle: Deutlich erkennbar sind zwei Ereignispopulationen, die durch das Verhältnis von Ionisations- zu Rückstoß-Energie separiert werden können. Die auf das Ionisationssignal angelegte Energieschwelle (grüne Kurve) entspricht einer Rückstoßenergie von 3.5keV. Die Bänder beschreiben die Bereiche, in denen 90% der Elektron- bzw. Kern-Rückstöße liegen.

Edelweiss Experiment

CDMS detectors

Ionization measurement in CDMS

Phonon measurement in CDMS SQUID: Superconducting Quantum Interference Device zur Messung von minimalen Änderungen der magnetischen Feldstärke (bis 10-14T !)

CDMS in Soudan mine in Minnesota (USA)

Fiducial Volume removes edges

XENON -Flüssiges Xe als Detektormaterial (LXe) gute Selbstabschirmung -hohe Dichte kompakte Detektoren -hohe Massenzahl -Betriebstemperatur „leicht“ zu halten (180 K) -niedrige Energieschwelle der Rückstoßenergie -gute Ionisations- und Szintillationseigenschaften

Noble liquids

Ionization and Scintillation in Xe

Double Phase Detector Concept

The XENON10 Experiment (10 kg)

Cross section limits

Annual Modulation as unique signature? Annual modulation:   v, so signal in June larger than in December due to motion of earth around sun (5-9% effect). June v0 galactic center Sun 230 km/s Dec. June Dec ±2% Background WIMP Signal L. Baudis, CAPP2003

Daten bis 2008 Modulation nur in 2-6 keV Region -> leichte WIMPs (Signal sehr nah an der Schwelle des Detektors!!)

Zusammenfassung a) DM in Galaxien eindeutig bestätigt durch flache Rotationskurven und Gravitationslinsen b) Direkte Suche nach DM durch Rückstöße in einem Detektor weltweit unterwegs, aber brauchen noch höhere Emfindlichkeit. c) Jährliche Modulation der Signale in Libra/DAMA (aber inkonsistent mit anderen Experimenten)