Vorlesung 5: Roter Faden: 1. Zeitentwicklung des Univ. (nach ART)

Slides:



Advertisements
Ähnliche Präsentationen
Kosmologie heute Vikariats-Regionalseminare Enkirch und „Nord“
Advertisements

Der Urknall und die ersten drei Minuten.
Die Urknalltheorie „Big Bang“
Die Urknalltheorie „Big Bang“
Vorlesung 4: Roter Faden: Friedmann-Lemaitre Feldgleichungen
Kosmische Hintergrundstrahlung
Dunkle Energie- ein kosmisches Rätsel Dunkle Energie –
Urknall und Dunkle Energie- über Anfang und Ende des Universums
Dunkle Energie- ein kosmisches Rätsel Dunkle Energie –
Dunkle Energie – Ein kosmisches Raetsel Dunkle Energie- ein kosmisches Rätsel.
Der Physik Nobelpreis 2006 John C. Mather (links) und George Smoot (rechts). 1.Vorlesung Teilchenphysik WiSemester 06/07 Michael Kobel.
Vorlesung Astronomie und Astrophysik 2
Kosmologie: Versuch eines Überblicks
Kosmischer Ursprung und Zeitentwicklung der von der Menschheit genutzten Energie E. Rebhan, Inst. f. Theor. Physik, Heinrich-Heine-Universität Düsseldorf.
Vorlesung 5: Roter Faden: 1. Temperaturentwicklung des Universums
Vorlesung 9: Roter Faden:
Vorlesung 11: Roter Faden: Horizontproblem 2. Flachheitsproblem
Die Urknalltheorie Einleitung Was besagt die Theorie?
Die Temperaturentwicklung des Universums
Die Temperaturentwicklung des Universums
Arno Penzias, Robert Wilson;
Vorlesung 9+10: Roter Faden: 1. Neutrino Oszillationen-> Neutrino Massen 2. Neutrino Hintergrundstrahlung -> DM? Universum besteht aus: Hintergrundstrahlung:
Der Urknall und seine Teilchen Die Temperaturentwicklung des Universums Marianne Ludwig
Die kosmische Hintergrundstrahlung
18 Jan 2008 Kosmologie, WS07/08, Prof. W. de Boer 1 Vorlesung 10: Roter Faden: 1.Neutrino Hintergrundstrahlung 2. Neutrino Oszillationen-> Neutrino Massen.
Vorlesung 9: Roter Faden: 1. Neutrino Oszillationen-> Neutrino Massen 2. Neutrino Hintergrundstrahlung -> DM? Universum besteht aus: Hintergrundstrahlung:
1.Hubblesches Gesetz: v = H d 2.Wie mißt man Geschwindigkeiten?
Vorlesung 4: Roter Faden: Friedmann-Lemaitre Feldgleichungen
Vorlesung 4: Roter Faden: Friedmann-Lemaitre Feldgleichungen
27 Nov Kosmologie, WS 08/09, Prof. W. de Boer 1 Vorlesung 5: Roter Faden: 1. Zeitentwicklung des Univ. (nach ART) 2. Temperaturentwicklung des Universums.
16 Jan 2009 Kosmologie, WS08/09, Prof. W. de Boer 1 Vorlesung 10: Roter Faden: 1.Neutrino Hintergrundstrahlung -> DM? 2. Neutrino Oszillationen-> Neutrino.
Vorlesung 11: Roter Faden: Horizontproblem 2. Flachheitsproblem
Vorlesung 3: Roter Faden: Wiederholung Abstoßende Gravitation
Vorlesung 10: Roter Faden: Horizontproblem 2. Flachheitsproblem
Experimentelle Astroteilchenphysik
Vom Anfang und Ende des Universums
GUT, Inflation, erste Teilchen
Hintergrundstrahlung
Friedmann Modell des Universums
HE  Animiere den Titel (Der Urknall) mit einem beliebigen Effekt!
Ein kurzer Blick in die Kosmologie
Wim de Boer, Karlsruhe Kosmologie VL, Einteilung der VL 1.Einführung 2.Hubblesche Gesetz 3.Antigravitation 4.Gravitation 5.Entwicklung des.
Hauptseminar Astroteilchenphysik – Kosmische Strahlung
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Die beschleunigte Expansion
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Einteilung der VL 0. Einführung Hubblesche Gesetz Gravitation
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
VL 20 VL Mehrelektronensysteme VL Periodensystem
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Einteilung der VL Einführung Hubblesche Gesetz Antigravitation
Eigenschaften des Photons
Blick in die Kosmologie Strahlung – Materie – Energie.
Marianne Korner. Programm Entdeckung Eigenschaften Vermessung durch Satelliten.
Auslegung eines Vorschubantriebes
Ein Blick in die Kosmologie Strahlung – Materie – Energie.
Das Universum: Vom Mond bis zu den fernsten Galaxien Robert Seeberger
Der Urknall.
Evolution des Lebens 2012 Der Urknall.
Analyseprodukte numerischer Modelle
Die kosmische Hintergrundstrahlung
Das Schicksal des Universums
Wie unser Universum aus fast Nichts entstand
Gravitation regiert die Welt
Die kosmische Hintergrundstrahlung
Easy4Me - Lösungsvorschlag
Eine kleine Einführung
Vergangenheit und Zukunft des Universums
Nobelpreis für Physik 1978 Für die Entdeckung der kosmischen Hintergrundstrahlung Arno Allan Penzias Robert Woodrow Wilson.
 Präsentation transkript:

Vorlesung 5: Roter Faden: 1. Zeitentwicklung des Univ. (nach ART) 2. Temperaturentwicklung des Universums 3. Kernsynthese 4. CMB=cosmic microwave background = kosmische Hintergrundstrahlung.

Zum Mitnehmen Friedmann-Lemaitre Feldgleichungen beschreiben Evolution eines homogenen und isotropen Universums. Daraus folgt mit p = α c2 : (t)  S(t) -3(1+α) S(t)  t 2/3(1+α) 2. Wenn Strahlung dominiert ( α = 1/3 ), dann gilt: S(t) = k0 t ½ 3. Wenn Materie dominiert (α = 0 ), dann gilt: S(t) = k1 t 2/3 4. Wenn Vakuumenergie dominiert ( = k), dann gilt: S(t) = k2 eHt (exponentielle Zunahme (Inflation) mit H = konstant)

Zeitentwicklung des Universums

Wie groß ist das sichtbare Universum für =1? Jetzt mit S(t) = kt2/3(1+) Daraus folgt:  =  d =  dt / S(t) oder mit S(t) = kt2/3(1+)  = c d = c1/ kt2/3(1+)dt = (3+3)/(1+3  )(c/k) t(1+3  ) /(3 +3 ) Oder R0= S(t)  = (3+3 )/(1+3 ) c t0 = 3ct0 für =0 (Materiedominanz) ct0 für =1/3 (Strahlungsdominanz) 0 ct0 für =-1 (Vakuumenergie) Wie berechnet man R0 für Kombination aller drei???? Nützlich: berechne nicht alles als Fkt. von S und t, sondern H und z, denn dies sind die beobachteten Größen. Beachte: Wellenlänge skaliert mit S!! D.h. 1+z=λobs/λemit=S0/S. ODER BEI z=1 war das Univ. nur halb so groß, bei z=1000 1/1000.

Alter des Universums mit  ≠ 0

Alter des Universums mit  ≠ 0

Alter des Universums mit  ≠ 0

Bisher: Ausdehnung und Alter des Universums berechnet. Wie ist die Tempe- raturentwicklung? Am Anfang ist die Energiedichte dominiert durch Strahlung.

Plancksche Gesetz für Strahlung eines schwarzen Körpers

Schwarzkörperstrahlung: ein Thermometer des Universums

Stefan-Boltzmann Gesetz für Strahlung eines schwarzen Körpers

Temperaturentwicklung des Universums Nach Stefan-Boltzmann: Str T4 Es gilt auch: Str  N E  1/S4 Daher gilt für die Temperatur des Strahlung: T  1/S Hiermit kann man die Fríedmann Gl. umschreiben als Funkt. von T! Es gilt: dT  d(1/S) oder S/S  -T/T und 1/S2  T2 Im strahlungsdominierten Universum kann man schreiben: (S/S)2 = (T/T)2 = 8GaT4/3c2 (Str=aT4>>m und k/S2 und ) Lösung dieser DG: T = (3c2/8aG)1/4 1/t = 1,5 1010 K (1s/t) = 1,3 MeV (1s/t) In Klartext: 1 s nach dem Urknall ist die Temperatur gefallen von der Planck Temperatur von 1019 GeV auf 10-3 GeV Entkoppelung der CMB bei T= 0,3 eV = 3000 K oder t = 3.105 yr oder z = S0/S = T/T0 = 3000 / 2.7 = 1100

Temperaturentwicklung des Universums

Nukleosynthese

Nukleosynthese

Nukleosynthese

Nukleosynthese

Nukleosynthese

Nukleosynthese (Geschichte)

Nukleosynthese (Zusammenfassung)

Nukleosynthese (Zusammenfassung)

WMAP Results agree with Nuclear Synthesis WMAP: Ωb=4,4% Kernsynthese:Ωb=4-5%

Temperaturentwicklung des Universums

Entstehung der 3K Kosmischen Hintergrundstrahlung Cosmic Microwave Background (CMB))

Nach Rekombination ‘FREE STREAMING’ der Photonen

Mather (NASA), Smoot (Berkeley) Kosmische Hintergrundstrahlung gemessen mit dem COBE Satelliten (1991) Mather (NASA), Smoot (Berkeley) Nobelpreis 2006 T = 2.728 ± 0.004 K  Dichte der Photonen 412 pro cm3 Wellenlänge der Photonen ca. 1,5 mm, so dichteste Packung ca. (10 mm / 1.5 mm)3 = ca. 300/cm3, so 400 sind viele Photonen/cm3

Geschichte der CMB Anfang 2003: WMAP Satellit mißt Anisotropie der CMB sehr genau.

Entdeckung der CMB von Penzias und Wilson in 1965

Das elektromagnetische Spektrum

The whole shebang

Zum Mitnehmen Temperaturentwicklung im frühen Universum: T = (3c2/8aG)1/4 1/t = 1,5 1010 K (1s/t) = 1,3 MeV (1s/t) Nach der Rekombination der Protonen und Elektronen zu neutralem Wasserstoff wird das Universum transparent für Photonen und absolut dunkel bis nach 200 Myr Sterne entstehen (dark ages) Die nach der Rekombination frei entweichende Photonen sind heute noch beobachtbar als kosmische Hintergrundstrahlung mit einer Temperatur von 2.7 K Es gilt: T 1/S für Strahlung und relativ. Materie (E>10mc2) T 1/S2 für nicht-relativ. Materie (Materie kühlt also schneller ab nach Entkoppelung von Strahlung und Materie) 1/S  1+z T  1/ t für Strahlung Hiermit zu jedem Zeitpunkt Energie oder Temperatur mit Dreisatz im frühen Universum zu berechnen, wenn mann weiss: zum Zeitpunkt der Rekombination: (Trec=3000 K) = 380.000 yr =(z=1100)

Zum Mitnehmen Pfeiler der Urknalltheorie: Hubble Expansion CMB Kernsynthese 1) beweist dass es Urknall gab und 2,3) beweisen,dass Univ. am Anfang heiss war!