Struktur-Funktions-Modelle von Pflanzen - Sommersemester 2015 - Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.

Slides:



Advertisements
Ähnliche Präsentationen
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Advertisements

1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (21 – Kürzeste Wege) T. Lauer.
Universität Dortmund, Lehrstuhl Informatik 1 EINI II Einführung in die Informatik für Naturwissenschaftler und Ingenieure.
Regelbasierte Programmierung mit XL
Regelbasierte Programmierung mit XL
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
/* Fichtenmodell, W.K */ module T; module M1; module S1; module M2; module S2; module M3; module S3; module GU(float incd, int age) extends.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Artifizielle Wachstumsprozesse Winfried Kurth Günter Barczik Reinhard Hemmerling Udo Bischof Lehrstuhl Grafische SystemeLehrstuhl Entwerfen Bauen im Bestand.
Artifizielle Wachstumsprozesse Winfried Kurth Günter Barczik Reinhard Hemmerling Lehrstuhl Grafische SystemeLehrstuhl Entwerfen Bauen im Bestand.
Artifizielle Wachstumsprozesse Ergänzung zu Teil 1 Winfried Kurth Günter Barczik Reinhard Hemmerling Lehrstuhl Grafische SystemeLehrstuhl Entwerfen Bauen.
Strukturmodelle: Modelltheorie bearbeitet von: Dr. Gerhard Buck-Sorlin Institut für Pflanzengenetik und Kulturpflanzenforschung Gatersleben Im Rahmen des.
Java-Kurs - 8. Übung Besprechung der Hausaufgabe.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Strukturmodelle: Systematik, State of the Art bearbeitet von: Dr. Gerhard Buck-Sorlin Institut für Pflanzengenetik und Kulturpflanzenforschung Gatersleben.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Diskrete Mathematik I Vorlesung 2 Arrays.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
 Präsentation transkript:

Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik 9. Vorlesung:

zuletzt: abgeleitete Relationen (z.B. transitive Hüllen) Die Sprache XL: Übersicht Queries im Graphen Die Software GroIMP: Übersicht Beispiel für ein dynamisches Strukturmodell: Fichte

als nächstes: Fichtenmodell (Besprechung der Hausaufgaben) Berechnung von Beschattung (1. Ansatz) sequenzielle Regelanwendung sekundäres Dickenwachstum, Pipe-Modell Instanzierungsregeln

Fichtenmodell in XL (vgl. letzte Vorlesung) /* Fichtenmodell sm09_fichte.rgg, W.K */ module T; /* terminale Knospe */ module M1; /* Seitenzweigknospe 1. Ordn., mediale Position */ module S1; /* Seitenzweigknospe 1. Ordn., subapikale Pos. */ module M2; /* Seitenzweigknospe 2. Ordn., mediale Pos. */ module S2; module M3; module S3; module GU(float incd, int age) extends F0; /* growth unit */ module BA(int age, super.angle) extends RL(angle); module GA(int age, super.angle) extends RL(angle); module HA(int age, super.angle) extends RL(angle); const int ang = 45; const int x3 = 50; const int[] a = { 0, 15, 25, 32, 37, 40 }; const int[] gg = { 0, 0, 4 }; const int[] hh = { 0, 0, 2, 4, 8 }; int n, k; const float[] prob_n = {0.1, 0.4, 0.3, 0.2}; const int[] n_subap = {5, 6, 7, 8};

protected void init() [ Axiom ==> P(2) D(1) L(100) T; ] public void grow() [ x:T ==> Nl(80*TurtleState.length(x)) GU(2.2, 0) RH(random(0, 360)) { k = 0; } for ((1:3)) /* 3 mediale Seitenäste 1. Ordnung */ ( [ MRel(random(0.2, 0.85)) RH(k*120+normal(0, 5.5)) { k++; } RL(x3+normal(0, 2.2)) BA(0, 0) LMul(0.4) M1 ] ) RH(random(0, 360)) { n = n_subap[distribution(prob_n)]; k = 0; } for ((1:n)) /* n subapikale Seitenäste 1. Ordnung */ ( [ MRel(random(0.85, 1)) RH(k*360/n+normal(0, 3.1)) { k++; } RL(x3+normal(0, 2.2)) BA(0, 0) LMul(0.65) S1 ] ) T; x:S1 ==> Nl(80*TurtleState.length(x)) GU(1.3, 0) [ MRel(random(0.85, 1)) RH(15) RU(ang+normal(0, 2.2)) AdjustLU LMul(0.7) S2 ] [ MRel(random(0.85, 1)) RH(-15) RU(-ang+normal(0, 2.2)) AdjustLU LMul(0.7) S2 ] GA(0, 0) S1; x:M1 ==> Nl(80*TurtleState.length(x)) GU(0.8, 0) [ MRel(random(0.85, 1)) RH(15) RU(ang+normal(0, 2.2)) AdjustLU LMul(0.7) M2 ] [ MRel(random(0.85, 1)) RH(-15) RU(-ang+normal(0, 2.2)) AdjustLU LMul(0.7) M2 ] HA(0, 0) M1;

x:S2 ==> Nl(80*TurtleState.length(x)) GU(1.3, 0) [ MRel(random(0.85, 1)) RH(10) RU(ang) AdjustLU LMul(0.7) S3 ] [ MRel(random(0.85, 1)) RH(-10) RU(-ang) AdjustLU LMul(0.7) S3 ] S2; x:M2 ==> Nl(80*TurtleState.length(x)) GU(0.8, 0) [ MRel(random(0.85, 1)) RH(10) RU(ang) AdjustLU LMul(0.7) M3 ] [ MRel(random(0.85, 1)) RH(-10) RU(-ang) AdjustLU LMul(0.7) M3 ] M2; x:S3 ==> Nl(80*TurtleState.length(x)) GU(1.3, 0); x:M3 ==> Nl(80*TurtleState.length(x)) GU(0.8, 0); GU(incd, t) ==> DlAdd(incd*(t+1)) GU(incd, t+1); DlAdd(arg) ==> ; BA(age, angle) ==> BA(age+1, a[age<5 ? age+1 : 5]); GA(age, angle) ==> GA(age+1, gg[age<2 ? age+1 : 2]); HA(age, angle) ==> HA(age+1, hh[age<4 ? age+1 : 4]); ]

- was ist unklar? - wie lässt sich das Dickenwachstum verstärken - für alle Wachstumseinheiten (growth units, GU)? - nur für den Stamm? - wie lässt sich (durch Veränderung des Längenwachstums) eine schlankere Kronenform erreichen? - wie lässt sich die Zahl der Haupt-Seitenäste vermindern?

Modellierung von Licht / Beschattung erster Modellansatz (stark vereinfachend): Beschattung eines Objekts liegt dann vor, wenn sich in einem gedachten Kegel mit Spitze im Objekt, geöffnet nach oben (z- Richtung), noch andere Objekte befinden. Beispiel: sm09_b42.rgg Lichtkonkurrenz dreier 2-dimensionaler Modellpflanzen

module Segment(int t, int ord) extends F0; module TBud(int t) extends F(1, 1, 1); module LBud extends F(0.5, 0.5, 1); Vector3d z = new Vector3d(0, 0, 1); protected void init() [ Axiom ==> P(2) D(5) V(-0.15) [ TBud(-4) ] RU(90) M(600) RU(-90) [ TBud(0) ] RU(-90) M(1200) RU(90) [ TBud(-8) ]; ] public void run() [ TBud(t), (t TBud(t+1); x:TBud(t), (t >= 0 && empty( (* s:Segment, (s in cone(x, z, 45)) *) ) ) ==> L(random(80, 120)) Segment(0, 0) [ MRel(random(0.5, 0.9)) RU(60) LBud ] [ MRel(random(0.5, 0.9)) RU(-60) LBud ] TBud(t+1); y:LBud, (empty( (* s:Segment, (s in cone(y, z, 45)) *) ) ) ==> L(random(60, 90) Segment(0, 1) RV0 LBud; Segment(t, o), (t Segment(t+1, o); Segment(t, o), (t >= 8 && o == 1) ==>> ; /* Entfernen des ganzen Astes */ ]

Ableitungsmodi in XL standardmäßig voreingestellt: parallele Regelanwendung (wie bei L-Systemen) Umschalten auf sequenzielle Anwendung (in jedem Schritt wird dann höchstens eine Regel angewandt): setDerivationMode(SEQUENTIAL_MODE) Rückschaltung auf parallel: setDerivationMode(PARALLEL_MODE) testen Sie das Beispiel sm09_b32.rgg

Modellierung des Dickenwachstums in Pflanzen häufig verwendete Ansätze: - Regression Durchmesser ~ Länge für neue Wachstumseinh. Zuwachs dann von Alter, Verzweigungsordnung etc. abhängig verwende z.B. Regel mit jährlichem festem Wachstum Shoot(l, d) ==> Shoot(l, d+delta_d); Interpretationsregel für Shoot: Shoot(d) ==> F(l, d); - oder: “pipe-model“-Annahme

“pipe model“ (SHINOZAKI et al. 1964) : Parallel geschaltete “unit pipes“ Querschnitt ~ Blattmasse ~ Feinwurzelmasse

Folgerung : „Leonardo-Regel“ (da Vinci, um 1500) d  didi  In jedem Verzweigungsknoten gilt d 2 =  d i 2 (Invarianz der Querschnittsfläche)

A = A 1 + A 2 d 2 = d d 2 2 A A1A1 A2A2 Realisierung in einem XL-Modell: siehe Beispiele sm09_b33.rgg, sm09_b34.rgg dort wird zunächst das Längen- und Strukturwachstum simuliert, dann in getrennten Schritten das Dickenwachstum, berechnet von oben nach unten (es ist auch eine – realistischere – Kombination möglich)

Ein weiterer Regeltyp in XL: Instanzierungsregeln Zweck: Ersetzung einzelner Module durch kompliziertere Strukturen, nur für die Darstellung (wie bei Interpretationsregeln) aber: es wird weniger abgespeichert (Einsparen von Speicherplatz) anders als bei Interpretationsregeln dürfen keine Turtle- Befehle mit Wirkung auf andere Knoten verwendet werden weitere Möglichkeit: „Replikator-Knoten“ zum Kopieren und Neuplatzieren von ganzen Strukturen

Instanzierungsregeln: Syntax kein neuer Regelpfeil Angabe der Instanzierungsregel direkt in der Moduldeklaration module A ==> B C D; ersetzt (instanziert) überall A durch B C D Beispiel sm09_b43.rgg

const int multiply = EDGE_0; /* selbstdefinierter Kantentyp */ module Tree ==> F(20, 1) [ M(-8) RU(45) F(6, 0.8) Sphere(1) ] [ M(-5) RU(-45) F(4, 0.6) Sphere(1) ] Sphere(2); module Replicator ==> [ getFirst(multiply) ] Translate(10, 0, 0) [ getFirst(multiply) ]; public void run1() [ Axiom ==> F(2, 6) P(10) Tree; ] public void run2() [ Axiom ==> F(2, 6) P(10) Replicator -multiply-> Tree; ] es wird eingefügt, was an der „multiply“- Kante hängt Tree wird mit der roten Struktur instanziert

weiteres Beispiel einer Anwendung eines Multiplikator- Knotens mit Instanzierungsregel: (Henke 2006)