2.3 2.3 Klimawandel durch Treibhauseffekt .31 Das Klima der Erde hat sich geändert .311 Temperatur .311a KlimaIndizes (El Nino, NAO )

Slides:



Advertisements
Ähnliche Präsentationen
Themenportal Europäische Geschichte / Web portal European History
Advertisements

Anzahl der ausgefüllten und eingesandten Fragebögen: 211
Mean and variance.
Vorlesung: 1 Betriebliche Informationssysteme 2003 Prof. Dr. G. Hellberg Studiengang Informatik FHDW Vorlesung: Betriebliche Informationssysteme Teil3.
R. Zankl – Ch. Oelschlegel – M. Schüler – M. Karg – H. Obermayer R. Gottanka – F. Rösch – P. Keidler – A. Spangler th Expert Meeting Business.
Herzlich Willkommen zum Informations-Forum: SAP Interoperabilität
Telefonnummer.
1 | R. Steinbrecher | IMK-IFU | KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Natural Sources SNAP11.
Energie und Klimawandel Forschungsstelle Zukunftsenergie (FZE )
Extreme Klimaereignisse werden immer ausgeprägter
EF: Standards + H2O red = H2O.
Weltweiter Klimawandel und seine Folgen Tel.: (49) 0681/ ; Fax / (für.
Energie und Klimawandel Forschungsstelle Zukunftsenergie (FZE )
C. Kottmeier, C. Hauck, G. Schädler, N. Kalthoff
NUMEX – Numerical experiments for the GME Fachhochschule Bonn-Rhein-Sieg Wolfgang Joppich PFTOOL - Precipitation forecast toolbox Semi-Lagrangian Mass-Integrating.
Rechneraufbau & Rechnerstrukturen, Folie 2.1 © W. Oberschelp, G. Vossen W. Oberschelp G. Vossen Kapitel 2.
Wozu die Autokorrelationsfunktion?
Vorlesung: 1 Betriebliche Informationssysteme 2003 Prof. Dr. G. Hellberg Studiengang Informatik FHDW Vorlesung: Betriebliche Informationssysteme Teil2.
Differentielles Paar UIN rds gm UIN
Prof. Dr. Bernhard Wasmayr
Das Late Maunder Minimum – Folge von Strahlungsanomalien?
Studienverlauf im Ausländerstudium
Prof. Dr. Bernhard Wasmayr VWL 2. Semester
Hochschulteam der Agentur für Arbeit Trier Preventing the Brainware Crisis Workshop Schloss Dagstuhl Student Enrollment in Computer Science.
Institut für Wasserbau Stuttgart Geodätisches Institut Stuttgart Institut für Meteorologie und Klimaforschung IMK-IFU SPP 1257 DIRECT WATERBALANCE An interdisciplinary.
AWA 2007 Natur und Umwelt Natürlich Leben
K. Butterbach-Bahl | ERSEC International Conference| 05/05/09 KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)
Zerlegung von Quadraten und ????
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 SADDU June 2008 S. Noël, K.Bramstedt,
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Pointing Meeting Nov 2006 S. Noël IFE/IUP Elevation and Azimuth Jumps during.
Das Klima in Menschenhand Dipl. Meteorologe Siegfried Vogt
1 Status Index Politikergebnisse Management Index Reformfähigkeit Exekutivkapazität Beteiligungskompetenz Gestaltungsfähigkeit Ressourceneffizienz Internationale.
Prof. Dr. Günter Gerhardinger Soziale Arbeit mit Einzelnen und Familien Übersicht über die Lehrveranstaltung Grundlegende Bestimmungsfaktoren der Praxis.
20:00.
Zusatzfolien zu B-Bäumen
Dr. Yuri Izrael, Russian vice chair of the IPCC: I think the panic over global warming is totally unjustified. There is no serious threat to the climate.
Machen Sie sich schlau am Beispiel Schizophrenie.
Institut für Solare Energieversorgungstechnik Verein an der Universität Kassel Bereich Energetische Biomassenutzung, Hanau Dipl.-Ing. J. Müller Bioturbine,
Eine Einführung in die CD-ROM
Dokumentation der Umfrage
1 Ein kurzer Sprung in die tiefe Vergangenheit der Erde.
Alp-Water-Scarce Water Management Strategies against Water Scarcity in the Alps 4 th General Meeting Cambery, 21 st September 2010 Water Scarcity Warning.
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Development.
International Program in 109 countries Atmosphere/Climate, Hydrology, Soil, Land Cover/Biology, Phenology and 4 NEW NSF Earth System Science.
The Ground-Based Millimeter Wave Radiometer MIRA2 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft.
INTAKT- Interkulturelle Berufsfelderkundungen als ausbildungsbezogene Lerneinheiten in berufsqualifizierenden Auslandspraktika DE/10/LLP-LdV/TOI/
Ziele und Informationen
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 K. Bramstedt, L. Amekudzi, J. Meyer IFE/IUP Tangent heights in occultation.
Fusszeilentext – bitte in (Ansicht – Master – Folienmaster, 1. Folie oben) individuell ändern! Danach wieder zurück in Normalansicht gehen! 1 OTR Shearography.
PROCAM Score Alter (Jahre)
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL Recent activities on ammonia emissions: Emission inventory Rindvieh.
4th Symposium on Lidar Atmospheric Applications
Ertragsteuern, 5. Auflage Christiana Djanani, Gernot Brähler, Christian Lösel, Andreas Krenzin © UVK Verlagsgesellschaft mbH, Konstanz und München 2012.
Symmetrische Blockchiffren DES – der Data Encryption Standard
Cross-Polarization Modulation in DWDM Systems
Ulrike Romatschke, Robert Houze, Socorro Medina
MINDREADER Ein magisch - interaktives Erlebnis mit ENZO PAOLO
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL 95% der Ammoniakemissionen aus der Landwirtschaft Rindvieh Pflanzenbau.
Wind Energy in Germany 2004 Ralf Christmann, BMU Joachim Kutscher, PTJ
Parkplatz-Orga Diese Version ist vom finale Version!
Zusammengestellt von OE3DSB
Folie Beispiel für eine Einzelauswertung der Gemeindedaten (fiktive Daten)
1 Stevens Direct Scaling Methods and the Uniqueness Problem: Empirical Evaluation of an Axiom fundamental to Interval Scale Level.
Selectivity in the German Mobility Panel Tobias Kuhnimhof Institute for Transport Studies, University of Karlsruhe Paris, May 20th, 2005.
How to use and facilitate an OptionFinder Audience Response System.
Forschungsprojekt Statistik 2013 „Jugend zählt“ – Folie 1 Statistik 2013 „Jugend zählt“: Daten zur Arbeit mit Kindern und Jugendlichen.
Folie Einzelauswertung der Gemeindedaten
Datum:17. Dezember 2014 Thema:IFRS Update zum Jahresende – die Neuerungen im Überblick Referent:Eberhard Grötzner, EMA ® Anlass:12. Arbeitskreis Internationale.
1 Medienpädagogischer Forschungsverbund Südwest KIM-Studie 2014 Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
Haline E Schendan, Meghan M Searl, Rebecca J Melrose, Chantal E Stern 
 Präsentation transkript:

2.3 2.3 Klimawandel durch Treibhauseffekt .31 Das Klima der Erde hat sich geändert .311 Temperatur .311a KlimaIndizes (El Nino, NAO ) .312 Niederschlag .313 Sea level .314 Gletscher .315 Arktisches Eis 3.16 Extreme 317 Übersicht .32 The Identification of human Influence on Climate Change Simulationen der globalen Temperatur lassen sich nicht alleine durch natürliche Strahlungsantriebe erklären .33 Treibhausgase in der Atmosphäre .331 Treibhausgase in der Atmosphäre seit der industriellen Revolution .331a Wo bleibt das in die Atmosphäre emittierte fossile CO2 ? .332 Atmospheric CO2 on different time-scales .333 Strahlungsantrieb und Global Warming Potential (GWP) .34 Modelle .341 EBM- Energiebilanz Modell . 342 Übersicht über kompliziertere Modelle .35 Projektionen und Szenarien für das 21. Jahrhundert . 351 “ Historische Perspektive“ . 352 Emissionsszenarien und die Komplexität der weiteren Entwicklung . 353 Main Climate Changes .36 Was tun? Erste Ansätze der Internationalen Gemeinschaft

„The Earth's climate system has changed, 2.31 Das Klima der Erde hat sich geändert .311 Temperatur .311a KlimaIndizes (El Nino, NAO ) .312 Niederschlag .313 Sea level .314 Gletscher .315 Arktisches Eis 3.16 Extreme 317 Übersicht „The Earth's climate system has changed, globally and regionally , with some these changes being attributable to human activities.“ Quelle: IPCC-TAR (2001)

Direct Observations of Recent Climate Change AR4 wird schon deutlicher: Direct Observations of Recent Climate Change Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global mean sea level. unequivocal = eindeutig Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206

2.310 Zusammenfassung der wichtigsten Erfahrungen (2001) The Earth has warmed 0.6± 0.2 [K] since 1860 with the last two decades being the warmest of the last century; The increase in surface temperatures over the 20th Century for the Northern hemisphere is likely to be greater than that for any other century in the last 1000 years; Precipitation patterns have changed with an increase in heavy precipitation events in some regions; Sea level has risen 10-20 cm since 1900; most non-polar glaciers are retreating; and the extent and thickness of Arctic sea ice is decreasing in summer; Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 1-Summary

Global average Air temperature Zusammenfassung der wichtigsten Erfahrungen (2007) Global average Air temperature Updated 100-year linear trend of 0.74 [0.56 to 0.92] oC for 1906-2005 Larger than corresponding trend of 0.6 [0.4 to 0.8] oC for 1901-2000 ( TAR) Average Ocean temperature increased to depths of at least 3000 m – ocean has absorbed 80% of heat added > seawater expansion and SLR At continental, regional, and ocean basin scales, numerous long-term changes in climate have been observed: Changes in Arctic temperatures and ice, Widespread changes in precipitation amounts, ocean salinity, wind patterns and aspects of extreme weather including droughts, heavy precipitation, heat waves and the intensity of tropical cyclones Quelle: IPCC- AR4-wg1, Vortrag Pachauri in Nairobi, 2007-0206

Global Mean Temperatures 1860-2001 Quelle: www.wmo.ch/web/Press/Press670.htm_graph1, erhalten 2002_0128; wmo_climate2001_fig1....jpeg /

‘98 ‘01 -- + 0,4 K ‘95 ‘90+1 ‘44 ‘83 -- 0 ‘50 ‘56 ‘76 ‘64 ‘29 ‘17

Aktueller Stand: Oberflächennahe Erdtemperatur _____2005_1-11 Erhalten 2005_1221

Global mean temperatures are rising faster with time Warmest 12 years: 1998,2005,2003,2002,2004,2006, 2001,1997,1995,1999,1990,2000 50 0.1280.026 100 0.0740.018 Period Rate Years /decade Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206

Arctic vs Global annual temperature anomalies (°C) Warming in the Arctic is double that for the globe from 19th to 21st century and from late 1960s to present. Warmth 1925 to 1950 in Arctic was not as widespread as recent global warmth. Note different scales Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206

Ein Blick in die Stratosphäre Global gemittelte Temperatur der Stratosphäre (16 - 24 km) Anomalien 1960-2002 (relativ zu 1958-1977) und einige explosive Vulkanausbrüche Trend: - 1,9 °C BQuelle: DPG2005_SyKE1.4Schoenwiese_CC-imIndustriezeitalter.ppt Datenquelle: Angell, 2004

Beobachtete Temperaturen innerhalb der Atmosphäre Temperatures shown as monthly mean anomalies relative to the period 1979 to 1997 smoothed with a seven-month running mean filter. Dashed lines indicate the times of major volcanic eruptions. {Figure 3.17} BQuelle: IPCC_AR4wg1_TS: Fig TS.7, p.38

Millennial Northern Hemisphere (NH) Temperature from AD 1000-1999 Langzeitperspektive: Millennial Northern Hemisphere (NH) Temperature from AD 1000-1999 Source: Mann et al. 1999. The 1990s were warmer than at anytime during the last 1000 years Quelle: IPCC_2000_WatsonSpeech: Fig 1

Das war die berühmte „hockey stick“ Temperatukurve der Nordhalkugel Über dies berühmte Kurve von Mann e.a. aus dem IPCC –Report 2001 haben sich viele Autoren mächtig aufgeregt. Wichtigster Streitpunkt: War es im Hochmittelalter nicht doch etwas wärmer? Man beachte aber die breiten Fehlerbalken. Man kann die Ausgleichskurve natürlich auch etwas anders zeichnen, am grundsätzli- chen Ergebnis ändert sich aber wenig. Siehe Beispiel von Moberg e.a. (2005) der sogar eine Darstellung von 0 – 2000 AD veröffentlicht hat Das mittelalterliche Klimaoptimum liegt dort geringfügig höher als bei Mann e.a. und auf gleicher Höhe wie der als Referenz benutzte Mittelwert 1961-1990

Klimaänderungen: Langfristperspektive (rel. zu 1961-1990) Unsicherheit Jahr BQuelle: C.D.Schönwiese (2207):“Der neue wissenschaftliche Sachstandsbereicht des IPCC“; AKE2007F-Vortrag , Folie 15

Übersicht über diverse Publikationen: NordHemisphäre Fazit: vielfältig, aber nicht grundlegend anders BQuelle:Schär.“Treibhausgase und Klimaänderung“, Vortrag 2005-11 Nuklearforum Schweiz,

Langzeitaspekt: Nordhemisphäre - Temperatur Rekonstruktionen Modellsimulationen Modellsimulationen BQuelle:DPG2005_SyKE1.4Schoenwiese_ CC-imIndustriezeitalter.ppt Mann und Jones, 2003

A Paleoclimatic Perspective Paleoclimate information supports the interpretation that the warmth of the last half century is unusual in at least the previous 1300 years. The last time the polar regions were significantly warmer than present for an extended period (about 125,000 years ago, Eem), reductions in polar ice volume led to 4 to 6 metres of sea level rise. Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206

The land and oceans have warmed Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 2

Land surface temperatures are rising faster than SSTs Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206

Air temperatures preferred patterns 2.311a Klima Oszillationen, Indizes Air temperatures preferred patterns Many regional climate changes can be described in terms of preferred patterns of climate variability and therefore as changes in the occurrence of indices that characterise the strength and phase of these patterns.

Patterns (Modes) of Climate Variability 2.311a Klima Oszillationen, Indizes Patterns (Modes) of Climate Variability A significant component of atmospheric and climatic variability can be described in terms of fluctuations in the amplitude and sign of indices . The best known of these indices of preferred patterns of variability are:: El Niño-Southern Oscillation (ENSO), a coupled fluctuation in the atmosphere and the equatorial Pacific Ocean, with preferred time scales of 2 to about 7 years and global teleconnections. ENSO is often measured by the difference in surface pressure anomalies between Tahiti and Darwin and the SSTs in the central and eastern equatorial Pacific. für uns eher „exotisch: • Southern Annular Mode (SAM), the fluctuation of a pattern with low antarctic surface ressure and strong mid-latitude westerlies, analogous to the NAM, but present year round. • Pacific-North American (PNA) pattern, an atmospheric large-scale wave pattern featuring a sequence of tropospheric high and low-pressure anomalies stretching from the subtropical west Pacific to the east coast of North America. • Pacific Decadal Oscillation (PDO), a measure of the SSTs in the North Pacific that has a very strong correlation with the North Pacific Index (NPI) measure of the depth of the Aleutian Low. However, it has a signature throughout much of the Pacific. BQuelle: IPCC_AR4wg1_TechnicalSummary: Box TS.2, p.39

The frequency, persistence and magnitude of El-Nino events has increased El Niño years La Niña years *As shown by changes in sea-surface temperature (relative to the 1961-1990 average) for the eastern tropical Pacific off Peru Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 6

more El Niño events and changes in the evolution of ENSO, ENSO: AR4 comments: The 1976–1977 climate shift, related to the phase change in the Pacific Decadal Oscillation (PDO) towards more El Niño events and changes in the evolution of ENSO, has affected many areas, including most tropical monsoons. There is substantial low-frequency atmospheric variability in the Pacific sector over the 20th century, with extended periods of weakened (1900–1924; 1947– 1976) circulation as well as periods of strengthened (1925–1946; 1977–2003) circulation. {3.2, 3.5, 3.6} BQuelle: IPCC_AR4wg1_TechnicalSummary:, p.38

Patterns (Modes) of Climate Variability North Atlantic Oscillation (NAO), a measure of the strength of the Icelandic Low and the Azores High, and of the westerly winds between them, mainly in winter. The NAO has associated fluctuations in the storm track, temperature and precipitation from the North Atlantic into Eurasia. Northern Annular Mode (NAM), a winter fluctuation in the amplitude of a pattern characterised by low surface pressure in the Arctic and strong mid-latitude westerlies. The NAM has links with the northern polar vortex and hence the stratosphere. BQuelle: IPCC_AR4wg1_TechnicalSummary: Box TS.2, p.39

Positive phase of NAM and NAO Changes associated with the positive phase of the NAO and NAM : pressure winds precipitation changes. Warm coloured areas are warmer than normal Blue areas are cooler than normal. NAM NAO BQuelle: IPCC_AR4wg1_ TechnicalSummary: Box TS.2, Fig. 1; p.39

AR4 zum Nord-Atlantischen Wetter: The characteristics of fluctuations in the zonally averaged westerlies in the Northern Hemisphere have more recently been described by their ‘annular mode’, the Northern Annular Mode (NAM). The observed changes can be expressed as a shift of the circulation towards the structure associated with one sign of the preferred pattern. Increased mid-latitude westerlies can be largely viewed as reflecting either NAO or NAM changes. Multi-decadal variability is also evident in the Atlantic, both in the atmosphere and the ocean. Quelle: IPCC_AR4wg1_TechnicalSummary:, p.38

Precipitation patterns have changed: 2.312 Niederschlag Precipitation patterns have changed: Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 3

Changes in Precipitation, Increased Drought Significantly increased precipitation in eastern parts of North and South America, northern Europe and northern and central Asia. The frequency of heavy precipitation events has increased over most land areas - consistent with warming and increases of atmospheric water vapour Drying in the Sahel, the Mediterranean, southern Africa and parts of southern Asia. More intense and longer droughts observed since the 1970s, particularly in the tropics and subtropics.

Land precipitation is changing significantly over broad areas Increases Decreases Smoothed annual anomalies for precipitation (%) over land from 1900 to 2005; other regions are dominated by variability.

Observed change in sea level 2.313 Observed change in sea level (UK) Stockholm Liverpool Time-series of relative sea level for the past 300 years from Northern Europe: The scale bar indicates ±100 mm. Stockholm, Sweden (detrended over the period 1774 to 1873 to remove to first order the contribution of post-glacial rebound); Liverpool - Data are of “Adjusted Mean High Water” rather than Mean Sea Level and include a nodal (18.6 year) term. [Based on Figure 11.7 of TAR1] Quelle: IPCC_2001_TAR_TS: Fig 6

Anstieg der Meereshöhe seit dem letzten Glazial Im 20. Jhd : + 1 bis 2 [mm/a] (aus Pegelmessungen) Seit dem letzten Glazial: vor 20 [ka], im Maximum des letzten Glazials : Meereshöhe lag 120 m tiefer (abseits von den Vereisungen) danach Anstieg vor 15 - 6 [ka] war die Zeit des stärksten Anstieges: 10 [mm/a] die letzetn 6 [ka]: 0,5 [mm/a] die letzetn 3 [ka]: 0,3 - 0,5 [mm/a] The top figure shows the global surface temperature record of the last 140 years. It is quite clear that the Earth is warming and that the last two decades are the warmest two decades of the last 140 years. The bottom figure shows the temperature record in the northern hemisphere for the last 1000 years. It is quite clear that the temperature increase in the last 150 years is unparalleled in the last 1000 years, i.e., during the industrial era. Quelle: nach IPCC_2001_TAR_TS: p. 31+32

Einfügen: Abb: Meeresanstieg in den letzten 100 ka

Annual averages of the global mean sea level since 1870 mm relative to the average for 1961 to 1990 Error bars are 90% confidence intervals. a reconstructed sea level fields since 1870 (red), tide gauge measurements since 1950 (blue) and satellite altimetry since 1992 (black). BQuelle: IPCC_AR4wg1_TechnicalSummary: Fig. TS.18, p.49, [Fig 5.13 ]

Contributions to sea level rise: Observed and Modelled 1961 - 2003 1993 - 2003 BQuelle: IPCC_AR4wg1_TechnicalSummary: Table TS3 p.50,

2.314 Gletscher A collection of 20 glacier length records from different parts of the world. Curves have been translated along the vertical axis to make them fit in one frame. Data are from the World Glacier Monitoring Service (http://www.geo.unizh.ch/wgms/) with some additions from various unpublished sources Length (unit: 1km ) a a The geographical distribution of the data (a single triangle may represent more than one glacier. Quelle: nach IPCC_2001_TAR1; fig 2.18, p.128

Gletscher-Schwund in den Alpen Aufnahme der Pasterzenzunge mit Großglockner (3798 m) Gesellschaft für ökologische Forschung, Wolfgang Zängl, http://www.gletscherarchiv.de BQuelle:DLR_Schumann200_Klimawandel.ppt

Gletscher-Schwund in den Alpen Aufnahme der Pasterzenzunge mit Großglockner (3798 m) Gesellschaft für ökologische Forschung, Wolfgang Zängl, http://www.gletscherarchiv.de BQuelle:DLR_Schumann200_Klimawandel.ppt

Gletscher-Schwund in den Alpen Aufnahme der Pasterzenzunge mit Großglockner (3798 m) Gesellschaft für ökologische Forschung, Wolfgang Zängl, http://www.gletscherarchiv.de BQuelle:DLR_Schumann200_Klimawandel.ppt

Schmelzwasserspenden der Hochgebirge: Verluste bis 2100 AD heute ___________ 2100 AD ©Pacific Northwest National Laboratory Beispiele: Alpenschnee: 61% bleiben übrig in 2100 AD Neuseeland Alpen: 16% ~ ~ Anden: 45% ~ ~ UrQuelle:Ghan,SJ und Shippert,T.:“Physically Based Global Downscaling:CC Projections für a full Century, Jornal of Climate 19,No.9.pp1589-1604 BQuelle: SD842122_Bis-2100schmilzt-dieHäfte-desHochgebirge-Schnees

Schneedecken der Hochgebirge bis 2100 AD: Die heutigen Abflussmengen (oben) sind den Prognosen für 2100 gegenüber gestellt. Die Schmelzwasserspenden in den Hochgebirge der Erde werden in den kommenden Jahren drastisch schrumpfen. Südamerika, Europa, der Westen der USA und Neuseeland sind am stärksten betroffen. UrQuelle:Ghan,SJ und Shippert,T.:“Physically Based Global Downscaling:CC Projections für a full Century, Jornal of Climate 19,No.9.pp1589-1604 BQuelle: SD842122_Bis-2100schmilzt-dieHäfte-desHochgebirge-Schnees

Arctic Sea Ice Melting since 1979 2.315 Arktisches Eis Arctic Sea Ice Melting since 1979 Quelle: The Big Thaw“, National Geographic (2004), Heft 9, p.21;

Arctic Sea Ice in 2003 Quelle: The Big Thaw“, National Geographic (2004), Heft 9, p.21;

when the ice extended over the Arctic Ocean from edge to edge. 1979: An image based on satellite data shows perennial ice cover in 1979, when the ice extended over the Arctic Ocean from edge to edge. Since then the area of coverage has decreased by 9% per decade 2003: A similiar image from 2003 shows dramatically reduced perennial ice cover. Large areas of open ocean have appeared near Russia, Alaska and Canada. Some climate models project, that the ice will be gone in summer by the end of the century. Quelle: The Big Thaw“, National Geographic (2004), Heft 9, p.21;

Quelle: The Big Thaw“, National Geographic (2004), Heft 9, p.21;

Abschmelzen des arktischen Meereises zwischen 1979 und 2005 ©National Snow and Ice Data Center Eindeutiger Trend: Seit Beginn der Satellitenbeobachtung hat die Ausdehnung des Meereises drastisch abgenommen. BQuelle: SpectrumDirekt SD790789 vom 1.10.2005, Bild 2 ; UrQuelle: National Snow and Ice Data Center

und in 2100 AD Eisbedeckung der Arktis Heute Meereis und LandSchnee Simulation: Eisbedeckung der Arktis Meereis und LandSchnee im Frühjahr und im Herbst: Heute und in 2100 AD Arktis im September eisfrei Schnee und Eis nur noch im Winter UrQuelle: MPI-Meteorologie Hamburg 2005, M.Böttinger, Presseerklärung 29.9.2005DKRZ (Deutsches Klimarechenzentrum), Hamburg;erscheint im IPCC-Bericht AR4; BQuelle: http://www.pro-physik.de/Phy/External/PhyH/1,,2-10-0-0-1-display_in_frame-0-0-,00.html?recordId=6973&table=NEWS

Extreme Klimaereignisse werden immer ausgeprägter Exzerpt aus Vorträgen von Prof. Schönwiese, Uni Frankfurt Goto Exkurs: V2.316_KlimaExtreme_Exzerpt-Schoenwiese.ppt

Bemerkung zur Angabe von Todesopfer: (1) Evidente Todesopfer : Individuum bekannt, Todes-ursache und Kausalität gesichert. (z.B.: Tote durch Ertrinken bei Hochwasser) (2) Statistische Todesopfer: Klare statistische Korrelation zwischen Anzahl der Todesfälle und äußerem Ereignis. (z.B. erhöhte Sterblichkeit bei Hitzewelle ) (3) Hochgerechnete Todesopfer: Extrapolierte Todeszahlen aufgrund von Dosis-Wirkungsbeziehung aus einem anderen Dosis-Bereich. Kein statistischer Nachweis mehr möglich. (z.B.: Tote in der AllgemeinBevölkerung durch kleine Strahlendosen)

North Atlantic hurricanes have increased with SSTs Marked increase after 1994 N. Atlantic hurricane record best after 1944 with aircraft surveillance. Global number and percentage of intense hurricanes is increasing (1944-2005) SST Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206

auch die eher alltäglichen Extremwerte haben sich geändert:

Warm nights are increasing; cold nights decreasing 1979-2003 1951-1978 1901-1950 fewer more fewer more Frequency of occurrence of cold or warm temperatures for 202 global stations for 3 time periods: 1901 to 1950 (black), 1951 to 1978 (blue) and 1979 to 2003 (red). Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206

Direct Observations of Recent Climate Change Some aspects of climate have not been observed to change: Tornadoes Dust-storms Hail Lightning Antarctic sea ice Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206

Hydrological and Storm-Related Indicators 2.317 Übersicht Hydrological and Storm-Related Indicators Probability : *** > 99% ; ** = in [90%, 99%] ; * = in [66%, 90%]; ? in [33%,66%] IPCC2001_TAR1_Fig2.39b

IPCC2001_TAR1_Fig2.39a

Also das Wichtigste: The Earth has warmed 0.6± 0.2 [K] since 1860 with the last two decades being the warmest of the last century; The increase in surface temperatures over the 20th Century for the Northern hemisphere is likely to be greater than that for any other century in the last 1000 years; Precipitation patterns have changed with an increase in heavy precipitation events in some regions; Sea level has risen 10-20 cm since 1900; most non-polar glaciers are retreating; and the extent and thickness of Arctic sea ice is decreasing in summer; Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 1-Summary

The Identification of a human Influence 2.32 The Identification of a human Influence on Climate Change

IPCC 2001: TAR_wg1: E. The Identification of a human Influence on CC Feststellung des IPCC: IPCC 2001: TAR_wg1: E. The Identification of a human Influence on CC E.8 Synopsis „ In the light of new evidence and taking into account the remaining uncertainties, most of the observed warming over the last 50 years is likely to have been due to the increase greenhouse gas concentrations. “ Quelle: IPCC_2001_TAR_TS: p. 61

from the instrumental record compared with ensembles of 4 simulations Bestätigung durch Modellrechnung: We look at Global mean surface temperature anomalies relative to the 1880 to 1920 mean from the instrumental record compared with ensembles of 4 simulations with a coupled ocean-atmosphere climate model. The thick line shows the instrumental data while the thin lines show the individual model simulations in the ensemble of four members. Note that the data are annual mean values. The model data are only sampled at the locations where there are observations

1. Can natural factors alone explain the recent temperature record? (a) model forced with solar and volcanic forcing only 1. Can natural factors alone explain the recent temperature record? Quelle: IPCC_2001_TAR_TS:fig 15a-c, p.58;

“Simulations of the response to natural forcings alone … do not explain the warming in the second half of the century” SPM {solar and volcanic forcing only} Stott et al, Science 2000 Quelle: IPCC_2001_TAR_TS:fig 15a, p.58; wg1_2_Mitchell - Vortrag bei COP6 Bonn 2001, Folie 12

b) model forced with anthropogenic forcing including: well mixed greenhouse gases, changes in stratospheric and tropospheric ozone and the direct and indirect effects of sulphate aerosols, 2. Can anthropogenic factors alone explain the temperature recent record?

{well mixed GHG + O3 + aerosols} Quelle: IPCC_2001_TAR_TS:fig 15b, p.58

c) model forced with all forcings, both natural and anthropogenic.

{solar and volcanic} and {well mixed GHG + O3 + aerosols} Both natural and anthropogenic forcings {solar and volcanic} and {well mixed GHG + O3 + aerosols} Quelle: IPCC_2001_TAR_TS:fig 15c, p.58

Remarks and details to Figure 15: The changes in sulphate aerosol are calculated interactively, and changes in tropospheric ozone were calculated offline using a chemical transport model. Changes in cloud brightness (the first indirect effect of sulphate aerosols) were calculated by an off line simulation and included in the model. The changes in stratospheric ozone were based on observations. The volcanic and solar forcing were based on published combinations of measured and proxy data. The net anthropogenic forcing at 1990 was 1.0 Wm-2 including a net cooling of 1.0 W/m2 due to sulphate aerosols. The net natural forcing for 1990 relative to 1860 was 0.5 Wm-2, and for 1992 was a net cooling of 2.0 Wm-2 due to Mount Pinatubo. Other models forced with anthropogenic forcing give similar results to those shown in (b). Quelle: IPCC_2001_TAR_TS:fig 15a-c, p.58

Most of the observed warming of the last 50 years is attributable to human activities also: Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 8

Attribution are observed changes consistent with Observations are observed changes consistent with expected responses to forcings inconsistent with alternative explanations All forcing Solar+volcanic Attribution of climate change to causes involves READ Climate models are important tools for attributing and understanding climate change. Understanding observed changes is based on our best understanding of climate physics, as contained in simple to complex climate models. For the 4rth assessment report, we had a new and very comprehensive archive of 20th century simulations available. This has greatly helped. This figure gives an example. You see observed global and annual mean temperature in black over the 20th century compared to that simulated by a wide range of these models. On the top, in red, are individual model simulations and their overall mean shown fat, that are driven by external influences including increases in greenhouse gases, in aerosols, in changes in solar radiation and by volcanic eruptions. The observations rarely leave the range of model simulations. The trends and individual events like cooling in response to volcanic eruptions (POINT) are well reproduced. The fuzzy range gives an idea of uncertainty with variability in the climate system. Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206

Understanding and Attributing Climate Change Continental warming likely shows a significant anthropogenic contribution over the past 50 years Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206

Fazit: 1. Der Temperaturanstieg der letzten 50 Jahre kann global und regional auf den anthropogenen Einfluss zurückgeführt werden. (heute viel deutlicher als noch beim TAR (2001)) 2. Menschlicher Einfluss wird heute (AR4) auch erkennbar in anderen Klimabereichen, u.a.: Erwärmung des Ozans Temperatur - Extrema Windsystemen Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi, 2007-0206

2.33 Treibhausgase in der Atmosphäre .331 CO2 und andere GHG seit der industriellen Revolution .332 Atmospheric CO2 on different time-scales .333 Strahlungsantrieb und Global Warming Potential (GWP) GHG= Grennhouse Gas

CO2 in der Atmosphäre seit der industriellen Revolution 2.331 CO2 in der Atmosphäre seit der industriellen Revolution

Human activities are increasing the atmospheric concentrations of: greenhouse gases that warm the atmosphere and, in some regions, of sulfate aerosols that cool the atmosphere; Most of the observed warming of the last 50 years is attributable to human activities

Berichtsstand:Ende 2000 update vom 2001_0813 http://cdiac.esd.ORNL.gov/trends/co2/graphics/Sio-mlgr.gif aktuelle Adresse: next side

Berichtsstand:Mitte 2005 update vom 2006_0130 http://cdiac.ornl.gov/trends/co2/graphics/mlo145e_thrudc04.pdf Berichtsstand:Mitte 2005 update vom 2006_0130 http://cdiac.ornl.gov/trends/co2/sio-mlo.htm

Originaldaten aus Mauna Loa – jedermann kann mit ihnen rechnen ******************************************************************* *** Atmospheric CO2 concentrations (ppmv) derived from in situ *** *** air samples collected at Mauna Loa Observatory, Hawaii *** *** *** *** Source: C.D. Keeling *** *** T.P. Whorf, and the Carbon Dioxide Research Group *** *** Scripps Institution of Oceanography (SIO) *** *** University of California *** *** La Jolla, California USA 92093-0444 *** *** *** *** May 2005 *** Monthly values are expressed in parts per million (ppm) and reported in the 2003A SIO manometric mole fraction scale. The monthly values have been adjusted to the 15th of each month. Missing values are denoted by -99.99. The "annual" average is the arithmetic mean of the twelve monthly values. In years with one or two missing monthly values, annual values were calculated by substituting a fit value (4-harmonics with gain factor and spline) for that month and then averaging the twelve monthly values. Quelle: http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2

Originaldaten aus Mauna Loa Quelle: http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2 Year Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec. Annual Annual-Fit 1958 -99.99 -99.99 315.71 317.45 317.50 -99.99 315.86 314.93 313.19 -99.99 313.34 314.67 -99.99 -99.99 1959 315.58 316.47 316.65 317.71 318.29 318.16 316.55 314.80 313.84 313.34 314.81 315.59 315.98 316.00 1960 316.43 316.97 317.58 319.03 320.03 319.59 318.18 315.91 314.16 313.83 315.00 316.19 316.91 316.91 1961 316.89 317.70 318.54 319.48 320.58 319.78 318.58 316.79 314.99 315.31 316.10 317.01 317.65 317.63 1962 317.94 318.56 319.69 320.58 321.01 320.61 319.61 317.40 316.26 315.42 316.69 317.69 318.45 318.46 1963 318.74 319.08 319.86 321.39 322.24 321.47 319.74 317.77 316.21 315.99 317.07 318.36 318.99 319.02 1964 319.57 -99.99 -99.99 -99.99 322.23 321.89 320.44 318.70 316.70 316.87 317.68 318.71 -99.99 319.52 1965 319.44 320.44 320.89 322.13 322.16 321.87 321.21 318.87 317.81 317.30 318.87 319.42 320.03 320.09 1980 338.01 338.36 340.08 340.77 341.46 341.17 339.56 337.60 335.88 336.01 337.10 338.21 338.69 338.67 1981 339.23 340.47 341.38 342.51 342.91 342.25 340.49 338.43 336.69 336.85 338.36 339.61 339.93 339.95 1982 340.75 341.61 342.70 343.56 344.13 343.35 342.06 339.82 337.97 337.86 339.26 340.49 341.13 341.09 1983 341.37 342.52 343.10 344.94 345.75 345.32 343.99 342.39 339.86 339.99 341.16 342.99 342.78 342.75 1984 343.70 344.51 345.28 347.08 347.43 346.79 345.40 343.28 341.07 341.35 342.98 344.22 344.42 344.44 1985 344.97 346.00 347.43 348.35 348.93 348.25 346.56 344.69 343.09 342.80 344.24 345.56 345.90 345.86 2000 369.14 369.46 370.52 371.66 371.82 371.70 370.12 368.12 366.62 366.73 368.29 369.53 369.48 369.47 2001 370.28 371.50 372.12 372.87 374.02 373.30 371.62 369.55 367.96 368.09 369.68 371.24 371.02 371.04 2002 372.43 373.09 373.52 374.86 375.55 375.40 374.02 371.49 370.71 370.24 372.08 373.78 373.10 373.08 2003 374.68 375.63 376.11 377.65 378.35 378.13 376.62 374.50 372.99 373.00 374.35 375.70 375.64 375.61 2004 376.79 377.37 378.41 380.52 380.63 379.57 377.79 375.86 374.06 374.24 375.86 377.48 377.38 377.43

Siehe nächste Seite! Danke Herr Becker. 2007.0606: aktualisierte Quelle: aber leider immer noch die alten Daten. Wer findet aktuellere Daten? Siehe nächste Seite! Danke Herr Becker. http://cdiac.ornl.gov/trends/trends.htm

Aktualisierte (2007-06) Links: http://www.mlo.noaa.gov/home.html hp of Mauna loa Observatory: http://www.mlo.noaa.gov/home.html Aktuelle CO2 Daten: http://www.esrl.noaa.gov/gmd/ccgg/trends/

These observations have been taken since the International Geophysical Year in 1957. It can be seen that the upward trend is not steady., Fig. from http://www.cmdl.noaa.gov/ccgg/iadv/ http://www.cmdl.noaa.gov/albums/ccgg_figures/co2mm_mlo.jpg (postscript version: ftp://ftp.cmdl.noaa.gov/ccg/figures/co2mm_mlo.ps) BQuelle: A.Robock:Lecture: „Volcanic Eruptions and Climate“, 2005, Folio95

If you plot the CO2 distribution as a function of latitude and time, you get the CO2 “rug.” The upward trend and out of phase relationship between the hemispheres is obvious. Fig. from http://www.cmdl.noaa.gov/ccgg/iadv/ http://www.cmdl.noaa.gov/albums/ccgg_figures/co2rug_multicolor.jpg (postscript version: ftp://ftp.cmdl.noaa.gov/ccg/figures/co2rug_multicolor.ps) BQuelle: A.Robock: Vorlesung:“ Volcanic Eruptions and Climate“, 2005, Folie96

Principal investigator: Thomas Conway, NOAA CMDL The year-to-year changes in CO2 concentrations are certainly not uniform. Fig. from http://www.cmdl.noaa.gov/ccgg/iadv/ http://www.cmdl.noaa.gov/albums/ccgg_figures/co2_gr_001.sized.jpg (actually postscript image from ftp://ftp.cmdl.noaa.gov/ccg/figures/co2gr.ps) BQuelle: A.Robock: ,Lecture: „Volcanic Eruptions and Climate“, 2005, Folio97 Principal investigator: Thomas Conway, NOAA CMDL http://www.cmdl.noaa.gov/ccgg

Possible causes of interannual CO2 variations - Changes in emissions - Land use changes - Unusual atmospheric temperatures or precipitation (e.g., drought) - El Niño and La Niña episodes - Volcanic eruptions through effects on diffuse radiation These ideas from Hoffman (2004), and discussed in detail by Robock (2005). Hofmann, D. J. (2004), Volcanic eruption influences on the rate of increase in major atmospheric greenhouse gases over the past 25 years, presentation at the IAVCEI General Assembly, Pucón, Chile, November 18, 2004. Robock, Alan, 2005: Cooling following large volcanic eruptions corrected for the effect of diffuse radiation on tree rings. Geophys. Res. Lett., 32, L06702, doi:10.1029/2004GL022116. Quelle: A.Robock:“ Volcanic Eruptions and Climate“, 2005, Folio98

Atmosphäre emittierte fossile CO2 ? Wo bleibt das in die Atmosphäre emittierte fossile CO2 ? Es gibt: große C-Speicher und große natürliche jährliche Flüsse (150 Gt /a C) Die zusätzliche Emission des fossilen CO2 (ca. 7 Gt C/a ) ist nur ein kleiner Teil des gesamten KohlenstoffKreislaufes.

Globaler Kohlenstoffkreislauf in Gt C bzw. Gt C/Jahr Atmosphäre 100 Stratosphäre 2-15 J 650 Troposphäre 1-10 J Vulkanismus fossile Brennstoffe < 0,05 6 * 2?? Waldrodung 1,5? 60 <1? 90 0,5? 2-3 600 Landvegetation 0,5-50 J 1600 tote Biomasse 200-400 J 1000 Mischungsschicht 1-10 J 38 000 „tiefer“ Ozean > 1000 J Biosphäre Ozean Bodenemission 20 000 000 Sedimente 106-109 J davon: 3500 Kohle 300 Erdöl 200 Erdgas Verwitterung 0,4 Pedosphäre/ Lithosphäre IPCC 2001 u.v.a., hier nach Schönwiese, 2003; * 2004: 7,5 Gt C entspr. 27,5 Gt CO2 BQuelle: C.D.Schönwiese: 2006-01, Frankfurt/M; Folie 28

Bilanz nach 200 Jahren CO2 Emission durch den Menschen :

Carbon emissions and uptakes since 1800 (Gt C) Quelle: IPCC-COP6a_Bonn2001_wg1_3_Watson 6

Wo bleibt das CO2 letzendlich : Atmosphäre Ozean

Atmosphärisches CO2 nach verschiedenen Emissionswegen GesamtEmission: 18 Tt CO2 !! 2050_ Quelle: IPCC 2005: SRCCS: Fig.6.2, p.280. (SRCSS= SpecialReport on CO2 Capture and Storage)

Figure 6.2. Simulated atmospheric CO2 resulting from CO2 release to the atmosphere or injection into the ocean at 3,000 m depth (Kheshgi and Archer, 2004). Emissions follow a logistic trajectory with cumulative emissions of 18,000 GtCO2. (sehr viel !!) Illustrative cases include 100% of emissions released to the atmosphere leading to a peak in concentration, 100% of emissions injected into the ocean, and 0% no emissions (i.e., other mitigation approaches are used). Additional cases include atmospheric emission to year 2050, followed by either (after 2050) 50% to atmosphere and 50% to ocean after 2050, or , 50% to atmosphere and 50% by other mitigation approaches after 2050. Fazit: Ocean injection results in lower peak concentrations than atmospheric release but higher than if other mitigation approaches are used (e.g., renewables or permanent storage). Quelle: IPCC 2005: SRCCS: Fig.6.2, p.280. (Bildunterschrift)

Atmospheric CO2 on different time-scales 2.332 Atmospheric CO2 on different time-scales (a) Direct measurements of atmospheric CO2. (b) CO2 concentration in Antarctic ice cores for the past millenium. Recent atmospheric masurements (Mauna Loa) are shown forcomparison.. ..Variations in atmospheric CO2 concentration on different time-scales.. (e) Geochemically inferred CO2 concentrations. (d) CO2 concentration in the Vostok Antarctic ice core. (c) CO2 concentration in the Taylor Dome Antarctic ice core. Different colours represent results from different studies. Quelle: IPCC_2001_TAR_TSFig.10a-d, p.40

The last 0.5 [Ga] : Geochemically inferred atmospheric CO2 (Coloured bars represent different published studies) Quelle: IPCC_2001_TAR_TSFig.10 f, p.40

GHG, Radiative Forcing and GWP 2.343 GHG, Radiative Forcing and GWP Treibhausgase (GHG) als Indikatoren von menschliche Aktivitäten Beschreibung ihrer direkten Wirkung : Strahlungsantrieb (Radiative Forcing) „Normierung“ ihrer Wirkung über die Zeit durch Vergleich mit CO2 Global Warmimg Potential (GWP)

Concentration of Carbon Dioxide and Methane Have Risen Greatly Since Pre-Industrial Times Carbon dioxide: 33% rise Methane: 100% rise ppb BW 5 The MetOffice. Hadley Center for Climate Prediction and Research. flask = Flasche Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

Indicators of the Human Influence on the Atmosphere during the Industrial Era These figures show that the atmospheric concentrations of the key anthropogenic greenhouse gases, carbon dioxide, methane and nitrous oxide were constant over hundreds of years until the industrial era. The observed increases in the atmospheric concentrations carbon dioxide, methane and nitrous oxide of 33%, more than a factor of two, and about 15% are attributable to human activities. Similarly, the atmospheric concentration of sulfate aerosols started to increase in the late 1800s due to the combustion of coal. Quelle: IPCC-COP6a_Bonn2001_wg1_3_Watson

Der Strahlungsantrieb : „radiative forcing“ A process that alters the energy balance of the Earth - atmosphere system is known as a radiative forcing mechanism (1. IPCC-Report (1990), p. 41-68). Radiative forcing [ W/m2 ] is the change in the balance between radiation coming into the atmosphere and radiation going out. A positive radiative forcing tends on average to warm the surface of the Earth, and negative forcing tends on average to cool the surface.

Radiative forcing : Radiative forcing is the change in the net , downward minus upward, irradiance (in W m–2) at the tropopause , due to a change in an external driver of climate change, such as, for example, a change in the concentration of CO2 or the output of the Sun. Radiative forcing is computed with all tropospheric properties held fixed at their unperturbed values, and after allowing for stratospheric temperatures, if perturbed, to readjust to radiative-dynamical equilibrium. Radiative forcing is called instantaneous if no change in stratospheric temperature is accounted for. For the purposes of this report, radiative forcing is further defined as the change relative to the year 1750 and, unless otherwise noted, refers to a global and annual average value. Radiative forcing is not to be confused with cloud radiative forcing, a similar terminology for describing an unrelated measure of the impact of clouds on the irradiance at the top of the atmosphere. Quelle: AR4-wg1, Final Report- Glossary, p.951

if it is negative, cooling occurs. Energy balance The difference between the total incoming and total outgoing energy. If this balance is positive, warming occurs; if it is negative, cooling occurs. Averaged over the globe and over long time periods, this balance must be zero. Because the climate system derives virtually all its energy from the Sun, zero balance implies that, globally, the amount of incoming solar radiation on average must be equal to the sum of the outgoing reflected solar radiation and the outgoing thermal infrared radiation emitted by the climate system. A perturbation of this global radiation balance, be it anthropogenic or natural, is called radiative forcing. External forcing External forcing refers to a forcing agent outside the climate system causing a change in the climate system. External forcings are: Volcanic eruptions, solar variations and anthropogenic changes in the composition of the atmosphere and land use change Quelle: AR4-wg1, Final Report- Glossary,

out: 107 in: 342 out: 235 Balance: radiation coming in : solar input = 342 [W/m^2 radiation going out. : 107 (reflected solar) + 235(i.r.) = 342 [W/m^2] IPCC2001_TAR1_Fig1.2

Stand TAR, (2001): SPM 3 Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

Aktueller Stand AR4, (2007):

Zeitliche Entwicklung 1880-2000 der GHG‘s und sonstiger Strahlungsantriebe Wer ist schuld am Treibhauseffekt ?

Die Klimaantriebe in ihrer zeitlichen Entwicklung all GHG__ __solar _Aerosol Aerosol in Stratosphere)__ BQuelle: VGB-Beising (2006): Klimawandel und Energiewirtschaft-Literaturrecherche, p.115, Abb. 8.15 A

(B) mit dem GISS Modell simulierte und beobachtete Temperaturänderung Modellrechnungen mit Klimaantrieben (forcings) und resultierenden Temperaturänderung für den Zeitraum 1880 - 2003 Modellrechnungen des Goddard-Instituts für den Zeitraum 1880 - 2003 (Hansen 2005a) mit den (A) in den Klimasimulationen verwendeten Klimaantrieben (forcings) und die (B) mit dem GISS Modell simulierte und beobachtete Temperaturänderung BQuelle: VGB-Beising (2006): Klimawandel und Energiewirtschaft-Literaturrecherche, p.115, Abb. 8.15

Global Warming Potential (GWP) The GWP is typically used to contrast different greenhouse gases relative to CO2. The GWP provides a simple measure of the relative radi- iative effects of the emissions of various greenhouse gases. GWP is calculated using the formula: where: ai = the instantaneous radiative forcing due to a unit increase in the concentration of trace gas i. ci = concentration of the trace gas i, remaining at time t after after its release. n = the number of years over which the calculation is performed. ai * ci(t) dt aCO2 * cCO2(t) dt Quelle:ORNL_OakRidge2002_Current_GHG..htm

Current GHG Concentrations Quelle: OakRidge NatLab http://cdiac.esd. ornl.gov/pns/ current_ghg.html mit Links zu Datenmaterial Quelle:ORNL_OakRidge2002_Current_GHG..htm

2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele Fortsetzung in Datei V2.34_Klimawandel2 GHG= Greenhouse Gas

Weitere Quellen und hervorragende Darstellungen

Globaler und regionaler Klimawandel http://web.uni-frankfurt.de/IMGF/meteor/klima/Sw-fh-frankfurt-2006.ppt Christian-D. Schönwiese Universität Frankfurt/Main Institut für Atmosphäre und Umwelt http://www.geo.uni-frankfurt.de/iau/klima © ESA/EUMETSAT: METEOSAT 8 SG – multi channel artificial composite colour image, 23-5-2003, 12:15 UTC Schönwiese_CC_Vortrag_FH-frankfurt-2006.ppt

Volcanic Eruptions and Climate Alan Robock Department of Environmental Sciences Rutgers University, New Brunswick, New Jersey USA This presentation discusses atmospheric emissions from volcanic eruptions and their effects on weather and climate. robock@envsci.rutgers.edu http://envsci.rutgers.edu/~robock version 1.3 Quelle: A.Robock:Lecture: Volcanic Eruptions and Climate, 2005, Folie1