3.2 Elektrische Maschinen

Slides:



Advertisements
Ähnliche Präsentationen
Dauermagnete Bei magnetischen Materialien unterscheidet man Eisenkerne bzw. Weicheisenstücke und Dauermagnete bzw. Hart-magnetische Materialien. Dauermagnete.
Advertisements

Der Elektromotor Von Moritz und Jan.
Der Universalmotor Kurzfassung der Projektarbeit im SS 2007 von
3. Einführung in die Elektrotechnik
Wechseltrom mit Widerstand und Kondensator
Induktion im bewegten Leiter
Leiter und Isolator Ein Stromkreis besteht aus einer leitenden Verbindung zwischen den beiden Polen einer Elektrizitätsquelle, in die noch mindestens ein.
17. Februar 2009 Induktion Spule Alexander Geers.
 1 2 3.2 Elektrische Maschinen Transformatoren Trafo
1.4 Operationsverstärker
Elektromagnetismus und Spule Demo Grundlagen
Eine Spule mit Weicheisenkern nennt man Elektromagnet.
Elektromagnetische Induktion
Ein Effekt der Induktion
Induktion bei Änderung des magnetischen Flusses
Drehstrom, Wechselstrom
Drehstrom, Wechselstrom
Einführung in die Physik für LAK
Magnetische Felder und Kräfte
Elektromotorische Kraft Wichtiges Grundwissen für den Lehramtsstudierenden der Haupt- und Realschule Foto: Christian Weiss Universität Augsburg Didaktik.
Magnetometer FGM-3 Kalibrierung und Untersuchungen mit dem Selbstbaumagnetometer FGM-3 von Speake.
Eigenschaften von Magneten
Elektrische Spannungen über Kondensator, Spule und Widerstand
Elektrische Spannungen über Kondensator, Spule und Widerstand
Induktivität einer Spule
Inhalt Erzeugung von elektrischer Spannung durch Induktion bei Änderung Der Fläche Des Magnetfelds Des Winkels zwischen Fläche und Magnetfeld Technische.
Eine Grundlage des öffentlichen Stromnetzes
Erzeugung magnetischer Feldstärke im Vakuum
Elektrische Feldstärke eines Dipols
Induktion eines elektrischen Felds
Strom, Magnetfeld, schwebender Supraleiter
Beispiele zur Induktion elektrischer Felder und zur Lenzschen Regel
Drehstrom, Wechselstrom
Satz von Gauß für das magnetische Feld
Elektromagnetische Induktion Wichtiges Grundwissen für den Lehramtsstudierenden der Haupt- und Realschule Bildquelle: Christian Weiss Universität Augsburg.
Erhöht Spannung und senkt Stromstärke oder senkt Spannung und
Luba Wenzel – Simon Geis
Eine Grundlage des öffentlichen Stromnetzes
Induktion eines magnetischen Feldes
Die Feldstärke.
Induktion bei Änderung des magnetischen Flusses
Induktion eines Sinus-förmigen Wechselstroms
Elektrische Ströme Strom Spannung Widerstand Ohmsches Gesetz.
Der Hall-Effekt David Fritsche Juli 2011.
Elektromotoren Elektromotor bezeichnet einen elektromechanischen Wandler, der elektrische Energie in mechanische Energie umwandelt. In Elektromotoren wird.
Kurzvortrag Der Linearmotor
Bei Strom- & Heizkreislauf lassen sich vergleichen …
Elektrizitätslehre II
3. Schaltungsentwicklung - Beispiel Taschenlichtorgel
Darstellung von Magnetfeldern durch Feldlinien
Elektrischer Strom und Magnetfeld
Der Universalmotor.
Elektrisches Feld und elektrische Feldstärke
17.1 Die elektromagnetische Induktion - Induktionsspannung
15. Das elektrische Feld Ein Feld ist ein Raum, in dem jedem Punkt ein bestimmter Wert einer physikalischen Größe zugeordnet wird.
18. Versorgung mit elektrischer Energie
Elektrische Energieversorgung
Ursache-Vermittlung-Wirkung Regel
Spannung durch Induktion
© Prof. Dr. Remo Ianniello
Die elektro-magnetische Induktion
Die elektro-magnetische Induktion
Die elektro-magnetische Induktion
Synchronmaschine im Stillstand
Die elektro-magnetische Induktion
Kommutatormaschine (gleichstromgespeist)
Faktoren für Magnetfeldstärke einer Spule
3.2 Elektrische Maschinen
 Präsentation transkript:

3.2 Elektrische Maschinen E- Motor 3.2 Elektrische Maschinen Pv mit Q, 3.2.2 Elektromotoren P2 mit M,n P1 mit U,I oder U,I,f,cos oder 3U, 3I, f, cos Elektromotoren sind Energiewandler Je nach angewendeter Stromart werden Gleich-, Wechsel- und Drehstrommotoren eingesetzt. Physikalische Grundlage: Kraftwirkung auf die bewegte elektrische Ladung N S Kraftflussdichte B des Feldes Feldlinien verstärken sich Elektronenfluss-richtung im Leiter F: Kraft auf den Leiter Feldlinien schwächen sich Magnetfeld des stromdurchflossenen Leiters I B F Feld-, Strom- und Kraftrichtung sind senkrecht zueinander F: Kraft in N B: Kraftflussdichte in Vsm-2 I: Stromstärke in A l: wirksame Leiterlänge in m WWU – Institut für Technik und ihre Didaktik – Hein Elektronik/Elektrotechnik – 3.2.2 Elektromotoren

N S Aufbau des Gleichstrommotors Klemmenkasten Ständer und Ständerfeld Kühlrippen Ständer aus Eisen N Wicklungsköpfe Polschuhe Ständerwicklung neutrale Zone S Ständer oder Stator eines Gleichstrommotors, die Polschuhe und Wicklungen liegen im Vergleich zum Schema um 90° verdreht im Gehäuse. Ständerwicklung wird mit Gleichstrom gespeist Eigenschaften von Feldlinien: treten senkrecht aus Oberflächen aus und ein, verlaufen, wenn möglich, parallel zueinander, bilden im Ständer einen geschlossenen Kreis. Ständermagnetfeld entsteht Nord- und Südpol bilden sich aus Senkrecht zur Feldrichtung liegt die neutrale Zone WWU – Institut für Technik und ihre Didaktik – Hein Elektronik/Elektrotechnik – 3.2.2 Elektromotoren

N S Entstehung des Drehmoments in einer Leiterschleife Leiterschleife ist drehbar gelagert und liegt in der neutralen Zone N S neutrale Zone Leiterschleife wird mit Gleichstrom gespeist N S Leiterschleife bildet ein eigenes Magnetfeld mit Nord- und Südpol aus N S N S Erklärung des Drehmoments: gleiche Pole stossen sich ab Leiterschleife dreht sich entgegen dem Uhrzeiger Feldlinien auf den gleichen Seiten der Leiterschleife verstärken bzw. schwächen sich. Das Drehmoment hält an, die Leiterschleife dreht sich weiter. Die Leiterschleife hat ihre Mittellage erreicht. Das Drehmoment besteht weiter. Die Feldlinien schwächen und verstärken sich auf beiden Seiten der Leiterschleife in gleichem Maße Die Leiterschleife dreht sich weiter, bis sich Nord- und Südpol von Ständer und Leiterschleife gegenüberstehen. Dann entsteht kein Drehmoment mehr. Die technische Zielstellung besteht darin, die Drehbewegung bei Erhaltung des Drehmoments kontinuierlich fortzusetzen. WWU – Institut für Technik und ihre Didaktik – Hein Elektronik/Elektrotechnik – 3.2.2 Elektromotoren

Der Läufer (Rotor) Eine vollständig rotierende Leiterschleife nennt man Läufer oder Rotor. Beim wirklichen Motor besteht der Läufer aus mehreren Läuferwicklungen, die auf einen Eisenkern gewickelt sind. Kugellager Kollektor mit Lammellen Läuferwelle Fixierung der Wicklungsköpfe und Befestigungen an den Lammellen (Garnumwicklung) Blechpaket mit Nuten für die Wicklungen Läuferwicklungen (Wicklungsköpfe) Die Läuferwicklungen werden über die Lammellen des Kollektors und über Kohlebürsten mit dem Läuferstrom gespeist. Bei der Rotation des Läufers werden seine Wicklungen ständig so mit Strom gespeist, dass das Magnetfeld des Läufers stets quer zum Magnetfeld des Ständers liegt. Bei dieser Anordnung erzeugt der Motor das größte Drehmoment. WWU – Institut für Technik und ihre Didaktik – Hein Elektronik/Elektrotechnik – 3.2.2 Elektromotoren

_ _ _ + + + 1 2 3 4 5 6 Aufbau der Läuferwicklung UL UL UL Trommelankerwicklung mit 6 Spulen Oberseite der Wicklung Unterseite der Wicklung Aufbau der Läuferwicklung im abgewickelter Darstellung 1 6 2 3 4 5 Fluss des Läuferstroms über die Lammellen 1 und 4, Entstehung der Pole Fluss des Läuferstroms über die Lammellen 2 und 5, Verschiebung der Pole nach rechts N N N S S S Fluss des Läuferstroms über die Lammellen 3 und 6, Verschiebung der Pole nach rechts Der Läufer hat eine halbe Umdrehung gemacht. Kollektorlammellen in abgewickelter Darstellung 1 2 3 4 5 6 Zufuhr des Läuferstroms über Kohlebürsten + _ UL + _ UL + _ UL Mit der Drehung des Läufers verdreht sich auch das Läuferfeld. In Beziehung zum Ständer ändert es seine Lage jedoch nicht! WWU – Institut für Technik und ihre Didaktik – Hein Elektronik/Elektrotechnik – 3.2.2 Elektromotoren

Wirkungsweise der Maschine – Zusammenwirken von Ständer- und Läuferfeld neutrale Zone Ständer mit Feld Läufer mit Feld S N Mit der vorangegangenen Darstellung wurde gezeigt, dass die Läuferwicklung so ausgeführt ist, dass auf der einen Seite des Läufers ein Nordpol und auf der anderen Seite ein Südpol entsteht. Die Läuferwicklung führt in der neutralen Zone keinen Strom weil die Kohlebürsten beim Übergang von einer Kollektorlammelle zur nächsten jeweils die benachbarten Lamellen kurz schließen. Beim Betrieb der Maschine stehen beide Magnetfelder in Wechselwirkung miteinander. Sie bilden ein Gesamtfeld WWU – Institut für Technik und ihre Didaktik – Hein Elektronik/Elektrotechnik – 3.2.2 Elektromotoren

N S N S Das resultierende Magnetfeld Das Ständer und das Läufermagnetfeld mussen senkrecht zueinander stehen. Deshalb wird das Läuferfeld auch Ankerquerfeld genannt. N Beide Magnetfelder können nicht unabhängig voneinander existieren. Sie bilden das resultierende Feld. Das resultierende Feld durchsetzt den Läufer nicht mehr senkrecht, sondern schräg. Es verschiebt die Pole des Ständers und Läufers. N neutrale Zone Damit verschiebt sich die neutrale Zone. S Die Folge ist, dass auch die Kohlebürsten zur Zuleitung des Läuferstromes in die neutrale Zone gedreht werden müssen. Kollektorlammellen Kohlebürsten mit Andruckfeder Bürstenhalter Bürstenbrücke S Je mehr der Motor belastet wird, desto größer wird der Läuferstrom. Dadurch verschiebt sich mit der Belastung die neutrale Zone. Zur Kompensation können in den Ständer Wicklungen eingebaut werden, die eine gegenteilige Wirkung haben, die Wendepole. WWU – Institut für Technik und ihre Didaktik – Hein Elektronik/Elektrotechnik – 3.2.2 Elektromotoren

M M Betriebsarten von Gleichstrommotoren Je nach Schaltung von Ständer- und Läuferwicklung können die Maschinen als Reihen- oder Nebenschlussmotoren betrieben werden. Dadurch unterscheiden sie sich in ihrem Betriebsverhalten erheblich. Reihenschlussmotor Nebenschlussmotor M M U Ständerwicklung Läuferwicklung mit Kollektor und Kohlebürsten U0 IS= IL IL IS U0 Wenn der Läufer im Magnetfeld des Ständers rotiert, dann entsteht in der Läuferwicklung eine Induktionsspannung U0. Die Induktionsspannung muss ihrer Ursache, also der Betriebsspannung U, entgegengerichtet sein. Sie wirkt wie ein Widerstand und begrenzt den Läuferstrom IL. Je größer die Belastung M des Motors, desto geringer die Drehzahl n, desto kleiner die Induktionsspannung U0, desto größer der Läuferstrom IL. U: Betriebsspannung; I: Gesamtstrom; IL:Läuferstrom; IS: Ständerstrom; U0: Induzierte Läuferspannung; RL: Ohmscher Widerstand des Läufers WWU – Institut für Technik und ihre Didaktik – Hein Elektronik/Elektrotechnik – 3.2.2 Elektromotoren

Betriebsverhalten: n I M Bei Betrieb von Elektromotoren ist die Betriebsspannung U konstant. Die Belastung des Motors entsteht durch das abgegebene Drehmoment M. Je nach Schaltungsart verhält sich die Drehzahl n des Motors verschieden. Mit wachsendem Drehmoment M nimmt die Drehzahl n ab und die induzierte Gegenspannung U0 wird kleiner. Folglich muss die Gesamtstromstärke I des Motors steigen. Der Reihenschlussmotor entwickelt bei niedrigen Drehzahlen sein größtes Drehmoment. Bei geringer Belastung kann seine Drehzahl bis zur Selbstzerstörung ansteigen. Er geht durch. Anwendung findet er als Antriebsmotor in Fahrzeugen und Elektrowerkzeugen. Der Nebenschlussmotor zeigt eine von der Belastung nahezu unabhängige Drehzahl. Der Motor kann dann durchgehen, wenn die Erregerwicklung unterbrochen wird. Anwendung findet der Motor dort, wo konstante Drehzahlen wichtig sind, bei Förder- und Hebezeugen. WWU – Institut für Technik und ihre Didaktik – Hein Elektronik/Elektrotechnik – 3.2.2 Elektromotoren

Anwendung des Reihenschlussmotors bei Wechselstrom – der Universalmotor Bei Betrieb mit Wechselstrom ändert sich die Richtung der Magnetfelder in Ständer und Läufer zeitgleich. Dadurch ändert sich die Richtung des erzeugten Drehmomentes nicht. Die Auslegung für Wechselstrombetrieb erfordert einen geblechten Eisenkern des Ständers. Dadurch werden wie beim Transformator die Wirbelströme gering gehalten. Der Eisenkern des Läufers ist zur Unterdrückung der Wirbelstromverluste in jedem Fall geblecht ausgeführt. Der Universalmotor hat bei Wechselstrombetrieb eine etwas geringere Leistung als bei Gleichstrombetrieb und auch einen kleineren Wirkungsgrad. Ursache sind die vom Transformator bereits bekannten induktiven Blindwiderstände, die die aufgenommene Stromstärke verringern und die Eisenverluste im Ständerblechpaket. WWU – Institut für Technik und ihre Didaktik – Hein Elektronik/Elektrotechnik – 3.2.2 Elektromotoren

Gleichstromgeneratoren Gleichstrommotoren können auch als Generatoren verwendet werden. Dabei Ändert sich die Energieflussrichtung. P2 mit M,n P1 mit U,I E- Motor Pv mit Q, P1 mit M,n P2 mit U,I Generator Pv mit Q, Gedankenexperiment: Eine mit einem Gleichstrommotor angetriebene Straßenbahn durchfährt eine Ebene. Der Motor wird mit der Betriebsspannung U und der Betriebsstromstärke IB aus dem Fahrleitungsnetz versorgt. Die aufgenommene Stromstärke I wir durch die im Läufer induzierte Gegenspannung U0 begrenzt. Die Bahn beginnt eine Talfahrt, wobei sie einen Hang hinabrollt und ihre Geschwindigkeit erhöht. Die Motordrehzahl n die Gegenspannung U0 steigen, bis U0 den Betrag der Betriebsspannung U erreicht hat. Die Bahn rollt ohne Stromaufnahme den Hang hinab. Der Hang wird steiler, die Geschwindigkeit erhöht sich, mit ihre die Motordrehzahl. Die Folge ist, dass die induzierte Gegenspannung U0 größer wird als die Betriebsspannung U. Der Motor ist zum Generator geworden und speist jetzt Strom in das Fahrleitungsnetz ein. WWU – Institut für Technik und ihre Didaktik – Hein Elektronik/Elektrotechnik – 3.2.2 Elektromotoren