Vorlesung 4: Roter Faden: Friedmann-Lemaitre Feldgleichungen Evolution des Universums in der ART Roter Faden: Evolution des Universums
Einteilung der VL 1+2 Hubblesche Gesetz 3. Gravitation 4. Evolution des Universum 5. Temperaturentwicklung 6. Kosmische Hintergrundstrahlung CMB kombiniert mit SN1a Strukturbildung 9. Neutrinos 10. Grand Unified Theories 11.-14. Suche nach DM
Friedmannsche Gl. und Newtonsche Mechanik Die Friedmannsche Gleichungen der ART entsprechen Newtonsche Mechanik + Krümmungsterm k/S2 + E=mc2 (oder u=c2) + Druck ( Expansionsenergie im heißem Univ.) + Vakuumenergie (=Kosmologische Konstante) Dies sind genau die Ingredienten die man braucht für ein homogenes und isotropes Universum, das evtl. heiß sein kann (Druck ≠ 0)
Heute: diese Zeit ausrechnen unter Berücksich- tigung der Dunklen Energie Aus Geschwindigkeitsmessungen kann man Vergangenheit und Zukunft des Universums rekonstruieren. Vergleiche mit Tennisball: wodurch wird er abgebremst? Schwerkraft oder Gravitation. Wenn mann Geschwindigkeiten entlang Bahn misst, kann man Zeitpunkt des Anfangs bestimmen Und berechnen wann er wieder zur Erde zurueckkehrt oder auch ob er ins Weltall verschwinden wird. So auch bei Messung der Geschwindigkeiten der Galaxien. Man kann fruehere Expansionsgeschwindigkeiten messen aus SN explosionen, deren Licht uns erst jetzt erreicht. Aus Dopplerverschiebung des Lichts dieser SN kann mann Geschwindigkeit bestimmen. Aus Helligkeit Kann man den Abstand bestimmen. Man findet eine beschleunigte Expansion, d.h. Expansion des Universums wird nicht nur durch Gravitation abgebremst, sondern erfaehrt auch eine Beschleunigung, wie z.b. Heliumballon durch die Erde angezogen wird, aber gleichzeitig durch die Wechselwirkung mit der umgebende Luft nach oben fliegt. Fuer einen Mondbewohner oder Astronaut im Weltall wuerde diese nach oben fliegende Heliumballon eine abstossende Gravitation bedeuten. Welche Wechselwirkung das Universum so eine beschleunigte Expansion erfahren laesst, ist nicht klar. Wir nennen es DE. Diese Energie macht ca. 73% der Energie des Universums aus.
Zum Mitnehmen Friedmann-Lemaitre Feldgleichungen beschreiben Evolution eines homogenen und isotropen Universums. Daraus folgt mit p = α c2 : (t) S(t) -3(1+α) S(t) t 2/3(1+α) 2. Wenn Strahlung dominiert ( α = 1/3 ), dann gilt: S(t) = k0 t ½ 3. Wenn Materie dominiert (α = 0 ), dann gilt: S(t) = k1 t 2/3 4. Wenn Vakuumenergie dominiert ( = k), dann gilt: S(t) = k2 eHt (exponentielle Zunahme (Inflation) mit H = konstant) 5. Alter des Universums für = 0.7: t 1/H0 14 .109 yr statt t= 2/3H0 10 .109 yr (älteste Galaxien > 13 .109 yr !)
Minkowski 4-dimensionale Raum-Zeit
Metrik = Vorschrift zur Längenmessung
Mathematische Beschreibung der Krümmung
Krümmung im 3-dim. Raum -> 4. Koordinate -> 4-dim. Euklidischer Raum
Robertson-Walker Metrik = Metrik in 4D-comoving coor. Für ein homogenes und isotropes Universum gilt: Metrik unabh. von ,θ, d.h. d = dθ = 0
Längen im gekrümmten Raum
Friedmann Gleichungen
Erste Friedman Gleichung nach Newton v =Friedmann für k=-2E/m Dimensionslose Dichteparameter:
Berücksichtigung der Expansionsenergie (1) (2) Differenziere (1) und benutze u=c2 ergibt die zweite Friedm. Gl dE=-pdV oder dE/dt = -p dV/dt - dV dp/dt Letzter Term doppelter Differentialterm, daher vernachlässigbar.
Kosmologische Konstante p
Kosmologische Konstante
Energieerhaltung aus Friedmann Gl.
Zeitentwicklung der Dichte
Zeitentwicklung der Dichte
Zeitentwicklung des Universums
Zeitentwicklung des Universums
Vakuumenergie abstoßende Gravitation Vakuumenergie and cosmological constant both produce repulsive gravity equivalent!
Andere Herleitung: Inflation bei konstantem 0 ρ ρMaterie ρVakuum Oder S(t) e t/ mit Zeitkonstante = 1 /H Alter des Univ., d.h.beschleunigte Expansion durch Vakuumenergie jetzt sehr langsam, aber zum Alter tGUT10-37s sehr schnell! H=1/t damals KONSTANT (weil ρ konst.) und 1037 s-1. Horizont= Bereich im kausalen Kontakt =ct = c/H wurde durch Inflation um Faktor 1037 vergrößert und Krümmungsterm -1 1/S2 um 1074 verringert.
Was ist das Vakuum? Warum Vakuum so leer? h Vakuumfluktuationen machen sich bemerkbar durch: 1)Lamb shift 2)Casimir Effekt 3)Laufende Kopplungs- konstanten 4)Abstoßende Gravitation h h Berechnung der Vakuumenergiedichte: 10115 GeV/cm3 im Standard Modell 1050 GeV/cm3 in Supersymmetrie Gemessene Energiedichte: 10-5 GeV/cm3 Warum Vakuum so leer?
Entwicklung des Universums str dom. vak dom. mat dom. vak dom.
Alter des Universums mit ≠ 0
Alter des Universums mit ≠ 0
Alter des Universums mit ≠ 0
Zum Mitnehmen Friedmann-Lemaitre Feldgleichungen beschreiben Evolution eines homogenen und isotropen Universums. Daraus folgt mit p = α c2 : (t) S(t) -3(1+α) S(t) t 2/3(1+α) 2. Wenn Strahlung dominiert ( α = 1/3 ), dann gilt: S(t) = k0 t ½ 3. Wenn Materie dominiert (α = 0 ), dann gilt: S(t) = k1 t 2/3 4. Wenn Vakuumenergie dominiert ( = k), dann gilt: S(t) = k2 eHt (exponentielle Zunahme (Inflation) mit H = konstant) 5. Alter des Universums für = 0.7: t 1/H0 14 .109 yr statt t= 2/3H0 10 .109 yr (älteste Galaxien > 13 .109 yr !)