Struktur-Funktions-Modelle von Pflanzen

Slides:



Advertisements
Ähnliche Präsentationen
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Advertisements

Java: Objektorientierte Programmierung
Baumstrukturen Richard Göbel.
Java: Grundlagen der Objektorientierung
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (17 – Bäume: Grundlagen und natürliche Suchbäume) Prof. Th. Ottmann.
Algorithmen und Datenstrukturen
XML - Abfragesprache Xpath. Problemstellung Unsere XML-Datei steht und wir wollen alle 1. Titel aller vergangenen Sendungen automatisch aus den Playlists.
Regelbasierte Programmierung mit XL
Polymorphe Operatoren: Bewertung
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Artifizielle Wachstumsprozesse Winfried Kurth Günter Barczik Reinhard Hemmerling Udo Bischof Lehrstuhl Grafische SystemeLehrstuhl Entwerfen Bauen im Bestand.
Artifizielle Wachstumsprozesse Winfried Kurth Günter Barczik Reinhard Hemmerling Lehrstuhl Grafische SystemeLehrstuhl Entwerfen Bauen im Bestand.
2. Die rekursive Datenstruktur Baum 2
Graphen und Bäume.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Eine kurze Geschichte der Graphentheorie
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen - Sommersemester Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik.
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Struktur-Funktions-Modelle von Pflanzen
Die Struktur einer Java-Klasse
Struktur-Funktions-Modelle von Pflanzen
Layout- und Filterverfahren zur Graphdarstellung in GroIMP
Struktur-Funktions-Modelle von Pflanzen
1. Die rekursive Datenstruktur Liste 1
Felder in der Informatik
3. Die Datenstruktur Graph 3.1 Einfache Graphen
 Präsentation transkript:

Struktur-Funktions-Modelle von Pflanzen - Sommersemester 2017 - Winfried Kurth Universität Göttingen, Lehrstuhl Computergrafik und Ökologische Informatik 9. Vorlesung: 22. 6. 2017

zuletzt: Graph als mathematische Grundstruktur Graph-Ersetzungsregeln zwei Regelsorten: L-System- und SPO-Regeln

als nächstes: ein weiterer Regeltyp: Aktualisierungsregeln Notation von Graphen in XL der aktuelle Graph in GroIMP abgeleitete Relationen (insbes. transitive Hüllen)

Wiederholung: Relationale Wachstumsgrammatiken (RGG: Relational Growth Grammars, parallele Graph-Gramm.) Zusammenfassung: Aufbau einer Regel einer RGG

ein weiterer Regeltyp: Aktualisierungsregeln manchmal will man gar nichts an der Graph-Struktur ändern, sondern nur Attribute eines einzelnen Knotens verändern (z.B. Berechnung der Photosyntheseleistung für ein Blatt). Dazu gibt es einen eigenen Regeltyp: A ::> { imperativer Code }; Testen Sie die Beispiele sm09_b25.rgg, sm09_b16.rgg, sm09_b18.rgg

Darstellung von Graphen in der Programmiersprache XL ● (neue) Knotentypen müssen mit „module“ deklariert werden ● Knoten können alle Java-Objekte sein. Bei eigenen module-Deklarationen können auch Methoden (Funktionen) und zusätzliche Variablen mitdeklariert werden, wie in Java ● Notation für Knoten in einem Graphen: Knotentyp, optional davor: bezeichner: Beispiele: A, Meristem(t), b:Bud ● Notation für Kanten: -Kantenbezeichner->, <-Kantenbezeichner- ● Spezielle Kantentypen: Nachfolgerkante: > Verzweigungskante: +> Verfeinerungskante: />

Darstellung von Graphen

selbstdefinierte Kantentypen ... const int xxx = EDGE_0; // oder EDGE_1, ..., EDGE_14 ... Verwendung im Graphen: -xxx->, <-xxx-, -xxx-

(vgl. Kniemeyer 2008, S. 150 und 403)

Notation von Graphen in XL Beispiel: wird im Programmcode dargestellt als (die Darstellung ist nicht eindeutig!) ( >: Nachfolgerkante, +: Verzweigungskante)

wie lässt sich der folgende Graph im Code textuell beschreiben? Bud > 1 X + Leaf

RU(30), A, B: normalerweise nicht (wenn nicht mit „extends“ Der aktuelle Graph GroIMP führt immer einen Graphen mit, der die gesamte aktuelle Strukturinformation beinhaltet. Dieser wird durch Anwendung der Regeln umgeformt. Achtung: Nicht alle Knoten des Graphen werden in der 3D-Ansicht durch sichtbare Objekte dargestellt! F0, F(x), Box, Sphere: ja RU(30), A, B: normalerweise nicht (wenn nicht mit „extends“ aus sichtbaren Objekten abgeleitet) Der Graph kann in der 2D-Graphansicht komplett dargestellt werden (in GroIMP: Panels - 2D - Graph).

Verfolgen Sie die Veränderung des Graphen, wenn Sie die Regeln Laden Sie eine Beispiel-rgg-Datei in GroIMP und führen Sie einige Schritte aus (verwenden Sie keine zu komplexe Struktur). Öffnen Sie die 2D-Graphansicht, verankern Sie mit der Maus das Fenster in der GroIMP-Oberfläche und testen Sie verschiedene Layouts (Layout - Edit): GeneralPurpose Tree Sugiyama Square Circle Random SimpleEdgeBased Fruchterman Verfolgen Sie die Veränderung des Graphen, wenn Sie die Regeln anwenden (redraw anklicken)!

was ist von der in XL erzeugten Graph-Struktur sichtbar (in der 3D-Ansicht) ? alle Geometrieknoten, die von der Wurzel (Zeichen: ^) des Graphen über genau einen Pfad, der nur aus "successor"- und "branch"-Kanten besteht, erreichbar sind. Erzwingen, dass ein Objekt auf jeden Fall sichtbar ist: ==>> ^ Objekt

abgeleitete Relationen Relation zwischen Knoten, die durch mehrere Kanten desselben Typs (hintereinander) verbunden sind: „transitive Hülle“ der ursprünglichen Relation (Kante)

reflexiv-transitive Hülle (auch „Knoten steht in Relation zu (-kantentyp->)+ reflexiv-transitive Hülle (auch „Knoten steht in Relation zu sich selbst“ zugelassen): (-kantentyp->)* z.B. für die Nachfolgerrelation: (>)* gemeinsame transitive Hülle der speziellen Kantentypen „Nachfolger“ und „Verzweigung“, in umgekehrter Richtung: (-ancestor->)* Interpretation: diese Relation besteht zu allen „Vorgängerknoten“ in einem Baum entlang des Pfades zur Wurzel.

(diese Relationen erstrecken sich nur bis zum ersten Knoten vom Typ B)

unterhalb des Blattes

ancestor: nächster Vorgängerknoten, der einen gegebenen Knotentyp hat descendants: alle Nachfolger, die einen geg. Knotentyp haben minDescendants: nächste Nachfolger, die einen geg. Knotentyp haben (Knoten anderer Typen werden übersprungen) Nachfolgerkante Verzweigungskante

Testen Sie die Beispiele sm09_b28.rgg, sm09_b29.rgg,