Current Version; CCM E39/C Future: ECHAM5/MECCA

Slides:



Advertisements
Ähnliche Präsentationen
The Stuttgart connection
Advertisements

PRESENTATION HEADLINE
Kopplung von Dynamik und atmosphärischer Chemie
E-Solutions mySchoeller.com for Felix Schoeller Imaging
Energy Supply in the Region Ulm / Neu-Ulm
Simulations of the Last Millennium with a General Circulation Model
R. Zankl – Ch. Oelschlegel – M. Schüler – M. Karg – H. Obermayer R. Gottanka – F. Rösch – P. Keidler – A. Spangler th Expert Meeting Business.
Herzlich Willkommen zum Informations-Forum: SAP Interoperabilität
1 | R. Steinbrecher | IMK-IFU | KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Natural Sources SNAP11.
Deutsches Zentrum für Luft- und Raumfahrt e.V. SCIAMACHY Calibration Review, 9-13 Sept 2002 page 1 Calibration Review: SCIAMACHY.
C. Kottmeier, C. Hauck, G. Schädler, N. Kalthoff
QUEST Quantitative Evaluation of Regional Precipitation Forecasts Using Multi-Dimensional Remote Sensing Observations März 2007, Bad Herrenalb Thorsten.
NUMEX – Numerical experiments for the GME Fachhochschule Bonn-Rhein-Sieg Wolfgang Joppich PFTOOL - Precipitation forecast toolbox Semi-Lagrangian Mass-Integrating.
Paläozeanographische Modellierung André Paul Raum: GEO 5510, Tel.:
Arnaud Cassan ( ARI / ZAH Heidelberg ) 4th Planet Formation Workshop MPIA, 1 st March 2006 Discovery of a cool 5.5 Earth-mass planet through gravitational.
LHC, 11 Jul 2008 Kai Schweda Hadron Yield Ratios Fig.3.3 1) At RHIC: T ch = 160 ± 10 MeV B = 25 ± 5 MeV 2) S = 1. The hadronic system is thermalized.
SOLNET Milan Optimization of the air-to-water heat exchanger configuration for water preheating in open district heating nets Janybek Orozaliev.
Das Late Maunder Minimum – Folge von Strahlungsanomalien?
Institut für Wasserbau Stuttgart Geodätisches Institut Stuttgart Institut für Meteorologie und Klimaforschung IMK-IFU SPP 1257 DIRECT WATERBALANCE An interdisciplinary.
5th IAEA Technical Meeting on ECRH Gandhinagar – February 2009
K. Butterbach-Bahl | ERSEC International Conference| 05/05/09 KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)
Seminar Telematiksysteme für Fernwartung und Ferndiagnose Basic Concepts in Control Theory MSc. Lei Ma 22 April, 2004.
Methods Fuzzy- Logic enables the modeling of rule based knowledge by the use of fuzzy criteria instead of exact measurement values or threshold values.
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 SADDU June 2008 S. Noël, K.Bramstedt,
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Pointing Meeting Nov 2006 S. Noël IFE/IUP Elevation and Azimuth Jumps during.
Langzeitsimulationen mit dem CCM E39C: Untersuchungen von Klima-Chemie Wechselwirkungen und Trends
stratosphärisch-troposphärischer Wechselwirkungen
Institut für Meteorologie und Klimatologie Universität Hannover Solare Strahlung – Stand und Perspektiven ihrer Erforschung Gunther Seckmeyer Short Notice.
KAE praxis verstehen chancen erkennen zukunft gestalten understanding reality facing challenges creating future Laboratory of Integrated Energy Systems.
Weather forecasts and crisis management Michael Staudinger
Integration of renewable energies: competition between storage, the power grid and flexible demand Thomas Hamacher.
Machen Sie sich schlau am Beispiel Schizophrenie.
Institut für Solare Energieversorgungstechnik Verein an der Universität Kassel Bereich Energetische Biomassenutzung, Hanau Dipl.-Ing. J. Müller Bioturbine,
A good view into the future Presented by Walter Henke BRIT/SLL Schweinfurt, 14. November 2006.
Analysis of Cross-Polarization Modulation in Dispersion-Managed DWDM Systems Marcus Winter, Christian-Alexander Bunge, Dario Setti, Klaus Petermann LEOS.
Extrusion of nickel–titanium alloys Nitinol to hollow shapes
Alp-Water-Scarce Water Management Strategies against Water Scarcity in the Alps 4 th General Meeting Cambery, 21 st September 2010 Water Scarcity Warning.
Sommer 2003 Satellitenmeteorologie - Sommer 2003 MODIS Bild vom Tropical Cyclone Inigo am 6 April 2003 an der Nordwestküste Australiens Wind~ 100 Knoten.
Technische Universität München - Internalising external costs of transportation - Effective option for climate protection or academic exercise? Regine.
Comparing field ionization models in simulations of laser-matter interaction Marco Garten.
Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Compton-scattering of the cosmic background radiation off a ultrarelativsitic.
Donnerstag, den 28. November FUTURE HOLIDAYS Lernziel: to learn how to express future ideas. Starter: Finde ein Paar! will plane...zu werde hoffe...zu.
Technische Universität Berlin Fakultät für Verkehrs- und Maschinensysteme, Institut für Mechanik Lehrstuhl für Kontinuumsmechanik und Materialtheorie,
Titelmasterformat durch Klicken bearbeiten Textmasterformate durch Klicken bearbeiten Zweite Ebene Dritte Ebene Vierte Ebene Fünfte Ebene 1 Development.
International Program in 109 countries Atmosphere/Climate, Hydrology, Soil, Land Cover/Biology, Phenology and 4 NEW NSF Earth System Science.
The Ground-Based Millimeter Wave Radiometer MIRA2 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft.
Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen Modelling of the carbon accumulation in beech.
Ziele und Informationen
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 K. Bramstedt, L. Amekudzi, J. Meyer IFE/IUP Tangent heights in occultation.
Verben Wiederholung Deutsch III Notizen.
Faculty of Public Health Department of Health Economics and Management University of Bielefeld WP 3.1 and WP 4.1: Macrocost EUprimecare Plenary Meeting.
Crystal Growth Conference in Gdansk Ojars Balcers 7 February 2014.
Impairments in Polarization-Multiplexed DWDM Channels due to Cross- Polarization Modulation Marcus Winter Christian-Alexander Bunge Klaus Petermann Hochfrequenztechnik-Photonik.
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL Recent activities on ammonia emissions: Emission inventory Rindvieh.
4th Symposium on Lidar Atmospheric Applications
Uncertainty in feedback mechanisms in climate change projections
Cross-Polarization Modulation in DWDM Systems
Ulrike Romatschke, Robert Houze, Socorro Medina
Lehrstuhl für Energiewirtschaft und Anwendungstechnik Prof. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher Integration of renewable energies: competition.
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL 95% der Ammoniakemissionen aus der Landwirtschaft Rindvieh Pflanzenbau.
Hier wird Wissen Wirklichkeit 1 Gravitational Radiation From Ultra High Energy Cosmic Rays In Models With Large Extra Dimensions Benjamin Koch ITP&FIGSS/University.
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center Institut für Physik der Atmosphäre Atmosphärische Aerosole The Multi-Angle Absorption.
Selectivity in the German Mobility Panel Tobias Kuhnimhof Institute for Transport Studies, University of Karlsruhe Paris, May 20th, 2005.
Technische Universität München 1 CADUI' June FUNDP Namur G B I The FUSE-System: an Integrated User Interface Design Environment Frank Lonczewski.
TUM in CrossGrid Role and Contribution Fakultät für Informatik der Technischen Universität München Informatik X: Rechnertechnik und Rechnerorganisation.
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) The dependence of convection-related parameters on surface and.
The influence of spatial variability of polar firn on microwave emission Martin Proksch 1, Henning Löwe 1, Stefanie Weissbach 2, Martin Schneebeli 1 1.
Welcome to the START08/Pre-HIPPO Workshop
Die Messung der Zunahme der Meeresspiegels
Long-term climate change & Short-term climate variability
 Präsentation transkript:

Current Version; CCM E39/C Future: ECHAM5/MECCA Surface, aircraft, lightning NOx Emissions [Tg N/a] Radiation Long-wave Short-wave Chemical Boundary Conditions Atmosphere: CFCs, at 10 hPa: ClX, NOy, Surface: CH4, CO Chemistry (CHEM) Methane oxidation Heterogeneous Cl reactions PSC I, II, aerosols Dry/wet deposition Photolysis Feedback O3, H2O, CH4, N2O, CFCs Prognostic variables (vorticity, divergence, temperature, specific humidity, log-surface pressure, cloud water), hydrological cycle, diffusion, gravity wave drag, transport of tracers, soil model, boundary layer; sea surface temperatures. T30, 39 layers, top layer centred at 10 hPa Dynamics (ECHAM) Lagrangian Transport ATTILA Stenke&Grewe 2005 Hein et al., 2001

Transiente Model simulation - Boundary Conditions QBO Solar cycle and volcanoes Dameris et al., 2005

Transiente Model simulation - Boundary Conditions Sea surface temperatures and ice coverage: Monthly means: UK Met Office Hadley Centre, hier: Beispiel für Juni 1985 (Rayner et al., 2003) Natural und anthropogenic NOx emissions: Source Reference Emissions: 1960 to 2000 Industry Benkovitz et al., 1996 12 - 33 TgN/a Lightning Grewe et al., 2001 ~5 TgN/a Air traffic Schmitt und Brunner, 97 0.1 - 0.7 TgN/a Surface Traffic Matthes, 2003 3.6 - 9.9 TgN/a Ships Corbett et al, 1999 1.2 - 3.2 TgN/a Biomass Burning Lee, pers. comm 6.3 - 7.2 TgN/a

Evolution of ozone column [DU]: 1960 - 2000 Ozone hole High variability 1960 1980 1980 2000

Grewe, 2004

De-seasonalized anomalies of the ozone columns [%] + - QBO clearly visible 11y- Solar cycle recognizable, but QBO, volcanoes, trend overlaid 1960 1980 Global Trend: ~20 DU 1980 2000

Ozone influx from the stratosphere to the troposphere Estimate based on correlations with long-lived species: 475 Tg/year (Murphey and Fahey, 1994) and with flux calculations: NH: 252 Tg/a SH: 248 Tg/a (Olson et al., 2004) Monthly means Signal of solar cycle identifyable especially on SH Large interannual variability No trends recognizable + - + - + - + - + x De-seasonalized

Simulated ozone origin Grewe, 2005

Ozone influx: ozone origin Northern Hemisphere: Ozone mainly produced in NHMS TRMS TRTS NHMS: high inter-annual variability Southern Hemisphere: Ozone mainly produced in TRTS SHMS TRLS SHMS low inter-annual variability  solar cycle visible Grewe, 2005

The lightning NOx source Kurz and Grewe, 2002

Variability and trends in the tropical UT: ENSO MLS H2O, UT, Tropics E39/C H2O, 200 hPa,Tropics 150E 90W (ppmv) Longitude Model reproduces individual strong events almost identical, e.g. 1995/96, 1997/98

Marked ozone tracers in a NMHC-model: MOZART-2 1890 1990 anthropogenic natural stratosphere Lamarque et al., 2005

Ozone changes in the tropical upper troposphere (30S-30N; 500-200 hPa) Lightning: most important source for ozone Large contrib. to variability Stratospheric ozone second most important source From 1990 Industry and surface transportation

De-seasonalized ozone changes in the tropical UT Stratospheric ozone follows influx from stratosphere, producing ±2% variability out of a totale interannual var. of ±4% Lightning ozone correlated with Nino Index variability: ±1-2%

Evolution of ozone in NH lower troposphere (30N-90N; 500-1000 hPa) Most important sources: Industry, surface transportation, lightning, stratosphere

Evolution of de-seasonalized ozone in NH lower troposphere (30N-90N; 500-1000 hPa) ~25% ~30% -5% Year-to-year variability strongly dominated by stratosphere (±5%) Trend in ozone (25% increase): - results from increase in NOx emissions (Industry and traffic) Trend reduction in 80s caused by lower emissions and lower stratospheric contribution.

Conclusion (1) Stratosphere realistical variability of dynamics realistical ozone trend (10% by H2O trend Stenke&Grewe, 2005) Interannual ozone-variability well reproduced (DWD-Ozonbulletin) Validation mainly based on direct comparison with observation (TOMS, ...) Stratosphere-Troposphere Exchange ozone influx diagnosed, solar cycle influences variability different ozone origins for STE on NH and SH results in different variability Findings based on special diagnostics: ozone origin Troposphere inter-annual variability in ozone attributed to sources NH ozone trend: Industry+Traffic (+30%), slower in 80s Reduction in 80s, caused by Strat-O3 Findings based on special diagnostics: ozone emission relation (tagged tracers)

Conclusion (2) The identification of climate-chemistry interactions, e.g. 'How does climate change chemistry?' largely depends on additional diagnostics. 2 Diagnostics presented a) Ozone origin diagnostic b) Ozone - emissions source relation How well do we understand these processes: a) How much of the ozone in the troposphere is originally produced e.g. in the tropics 30 km? b) How much ozone is produced e.g. by lightning? Model intercomparison would help to understand these processes. Observational data maybe partly available.

Institut für Physik der Atmosphäre

Ozone Chemistry - Stratosphere Source: IETZE & Eber-Hard, UBA Production Destruction

Ozone Production: O2  O + O O2 + O  O3 Ozone Chemistry - troposphere Ozone Production: O2  O + O O2 + O  O3 O2

Transiente Model simulation - Aufwand and Realization Supercomputer Simulation + raw data preparation Preparation of the simulation: 1 year; 10 Persons; Literatur recherche, Data preparation, Development of diagnostics, Development of run-scripts Realization: 1/2 year on NEC SX4 using 1-3 Processors Roughly 1 TByte Output Workstation Visualization Internet Control

Overview Motivation Modell / Experiment Stratosphere: Circulation: Validation Chemistry: Ozone: What determines its variability? Impact on the troposphere Troposphere NOx and Lightning Ozone Trends Summary

E39/C vs. NCEP: Zonal Wind (60°N) and Temperature (80°N) in 30 hPa 1960 - 1999 1960 - 1999 Temperatur Model 1978 - 2002 1978 - 2002 Observation High variability on Northern Hemisphere well represented

E39/C vs. NCEP: Zonal Wind (60°S) and Temperatur (80°S) at 30 hPa Temperature 1960 - 1999 1960 - 1999 Model 1978 - 2002 1978 - 2002 Observation Low variability on Southern Hemisphere well represented; BUT: Cold-Pole Problem

Strengthening of the Jet streams and cooling But: Within variability E39/C: Zonal Wind (60°N) and Temperature (80°N) Temporal development of polar vortex Wind Temperature Between 60s and 70s-90s: Strengthening of the Jet streams and cooling But: Within variability

Polar vortex exists longer E39/C: Zonal Wind (60°S) and Temperature (80°S) Temporal development of polar vortex Wind Temperature Polar vortex exists longer

E39/C vs. MSU Channel 4: Global mean temperature anomalies in the lower stratosphere (15-23 km)

Variability und trends in der LS: Temperature Trend + Solar Cycle + Volcanoe Linear trend Solar cycle  stepwise cooling of the stratosphere Volcanoes

Variability of ozone column at 25°S - 25°N Influence of the sun WMO, 2003; fig. 4-5 + - + - + - + - +

E39/C vs. Observation: Anomalies of ozone column calm, stable winter situations Beginning of 90s: stronger ozone losses E39/C Individual strong events well represented TOMS Ground stations -> Rudi Deckert (Bojkov and Fioletov, 1995; pers. com. Fioletov, 2004)

Ozone climatologies: E39/C and TOMS E39/C: (60-79) minus (80-99)

Ozon-Mischungsverhältnis [in ppbv] - Mittelwert 1960-1969 inter-annual variability

Overview Motivation Modell / Experiment Stratosphere: Circulation: Validation Chemistry: Ozone: What determines its variability Impact on the troposphere Troposphere NOx and Lightning Ozone Trends Summary

Total Cloud Coverage (%) ECHAM ISCCP V. Grewe, M. Ponater, M. Dameris, R. Meerkötter; (DLR-IPA)

Monthly means, area averaged Total cloud cover from the transient run of the ECHAM model in comparison to ISCCP, ECC, and SYNOP data sets d=+12% c=0.2 ECHAM, 24h ISCCP-D2, 12:00 UT d=-16% c=0.7 ECHAM, 24h ECC, ~11:30-16:30 UT d=0.0% c=0.4 Total cloud amount from ECHAM shows no trend over the whole 40 years period but variations on a decadal scale, espicially in the minimum values Differences among ISCCP, ECC, and SYNOP is in the order of differences between ECHAM and each of the data sets. ECHAM and ECC show almost the same amplitude in seasonal variability leading to the highest correlation, but the minimum mean difference is found between ECHAM and SYNOP. ISCCP shows almost no seasonal variability ISCCP cloud amounts are higher, ECC cloud amounts are lower than ECHAM results NOTE, it is an example for Germany, monthly mean ECHAM data result from 24 hour averages d = mean digfference c = correlation coefficient Monthly means, area averaged Meerkötter et al., 2004 ECHAM, 24h SYNOP, 12:00 UT R. Meerkötter, V. Grewe, M.Dameris, M. Ponater; (DLR-IPA), H. Mannstein (DLR-IPA), G. Gesell (DLR-DFD), C.König (DLR-IPA)

Modelled Lightning (convective massflux) vs Observations E39/C model OTD Satellite data Kurz and Grewe, 2002

Simulated evolution of cloud to ground lightning 1960 to 2000 El Nino events

Variability and trends in the tropical UT: ENSO E39/C H2O, 200 hPa, 20°N-20°S, „detrended” - ENSO-Index: El Niño, La Niña 1960 1980 2000 Starker El Niño: +30 ppmv H2O : SST (Nino3.4) Nino3.4: 5°N-5°S, 170°W-120°W Lag-Korrelation: 3 Monate Korrelationskoeffizient r = 0.67 H2O/ SST = 5.3 ppmv/K Stenke, 2005

Simulation and Observations of NOx Upper troposphere: Air traffic corridor Tropospheric column Observations Satellite Measurements Aircraft Measurements - NOXAR Grewe et al., 2002 Lauer et al., 2002, Modell E39/C

Ozon-Differenzen: (90-99) minus (60-69) [in ppbv]

Temperatur [in K] - Mittelwert 1960-1969

Temperatur-Differenzen: (90-99) minus (60-69) [in K]

Zonal Wind [in m/s] - Mittelwert 1960-1969

Zonal Wind-Differenzen: (90-99) minus (60-69) [in m/s]

Änderungen des Tropopausendrucks

Änderungen des Wasserdampf-Mischungsverhältnis an der thermischen Tropopause

E39/C: Wasserdampftrend in 80 hPa, 40°N und 40°S Randel et al., 2004

E39/C: Wasserdampftrend an der thermischen Tropopause 1980-2000 (!) Boulder 40°N

Variabilität durch vorgeschriebene Antriebe Einfluss von Vulkanen

Variabilität durch vorgeschriebene Antriebe Einfluss der quasi-zweijährigen Oszillation (QBO)

Anomalien der Ozongesamtsäule, bezogen auf 1964 bis 1980

Ozonbulletin des DWD, November 2004

Variabilität der Ozongesamtsäule in 30° - 60°N, JFM 12 DU ± 4 DU

Variabilität durch vorgeschriebene Antriebe Einfluss der solaren Aktivität (11-Jahres Zyklus)

Ozonproduktionsrate und -photolyserate in 10, 30 und 50 hPa

Zusammenfassung Ergebnisse der früheren Zeitscheibenexperimente (1960, 1980, 1990) und die daraus abgeleiteten Schlüsse (z.B. Hein et al., 2001; Grewe et al., 2001; Schnadt et al., 2002) werden bestätigt. Berechnete klimatologische Mittel dynamischer und chemischer Größen sowie saisonale und interannuale Variationen stimmen mit Beobachtungen weitestgehend überein. Langzeitliche Veränderungen (Trends) werden in der transienten Simulation zufriedenstellend reproduziert. Das Modell zeigt überraschenderweise Ähnlichkeiten mit beobachteten, singulären Ereignissen, besonders in der Südhemisphäre. Vorgeschriebene Meeresoberflächentemperaturen, die Berücksichtigung der solaren Variabilität und der QBO spielen für die Variabilität der (Modell-)Atmosphäre eine wichtige Rolle, große Vulkanausbrüche beeinflussen die Atmosphäre nur für wenige Jahre.

Ozonbulletin des DWD, November 2004

Ozone production and destruction: 50°N, 50 hPa

Ozone anomalies in 50°N, 50 hPa, related to 1967 - 1979