Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Anfang Präsentation Signale und Systeme II Modellierung Elektrischer Schaltkreise II Prof. Dr. François E. Cellier Institut für Computational Science ETH.

Ähnliche Präsentationen


Präsentation zum Thema: "Anfang Präsentation Signale und Systeme II Modellierung Elektrischer Schaltkreise II Prof. Dr. François E. Cellier Institut für Computational Science ETH."—  Präsentation transkript:

1 Anfang Präsentation Signale und Systeme II Modellierung Elektrischer Schaltkreise II Prof. Dr. François E. Cellier Institut für Computational Science ETH Zürich 29. Juni 2006

2 Anfang Präsentation Signale und Systeme II Algorithmen zur systematischen Behandlung differentialalgebraischer Gleichungssysteme Die bisher aufgezeigten Sortierverfahren sind nicht systematisch genug, um sie in einem Computerprogramm zu automatisieren. In dieser Vorlesung wird ein Algorithmus vorgestellt, der immer funktioniert, und der leicht automatisiert werden kann.

3 Anfang Präsentation Signale und Systeme II Übersicht Strukturinzidenzmatrix Strukturdigraph Tarjan AlgorithmusTarjan Algorithmus Aufbrechen algebraischer GleichungssystemeAufbrechen algebraischer Gleichungssysteme Strukturelle Singularitäten und der StrukturdigraphStrukturelle Singularitäten und der Strukturdigraph Pantelides AlgorithmusPantelides Algorithmus

4 Anfang Präsentation Signale und Systeme II Tarjans Schleifenaufbrechalgorithmus Es wird nun ein Verfahren vorgestellt, welches in der Lage ist, algebraische Schleifen systematisch und algorithmisch zu erkennen und zu isolieren. Beim Tarjan Algorithmus handelt es sich um ein graphisches Verfahren, welches dazu dient, Gleichungssysteme gleichzeitig sowohl horizontal wie vertikal zu sortieren. Der Algorithmus kann ausserdem dazu verwendet werden, algebraisch gekoppelte Gleichungssysteme minimaler Grösse zu finden.

5 Anfang Präsentation Signale und Systeme II Die Strukturinzidenzmatrix I Die Strukturinzidenzmatrix enthält eine Zeile für jede Gleichung des Algebrodifferentialgleichungssystems sowie eine Spalte für jede Unbekannte, die das Gleichungssystem erhält. Da ein vollständiges Gleichungssystem immer gleich viele Gleichungen wie Unbekannte aufweist, ist die Struktur- inzidenzmatrix quadratisch. Das Element der Strukturinzidenzmatrix betrachtet die Gleichung #i sowie die Unbekannte #j. Das Element hat einen Wert von 1, falls die angezeigte Variable in der betrachteten Gleichung auftritt, sonst enthält das entsprechende Matrixfeld den Wert 0.

6 Anfang Präsentation Signale und Systeme II Die Strukturinzidenzmatrix: Ein Beispiel 1: U 0 = f(t) 2: i 0 = i L + i R1 3: u L = U 0 4: di L /dt = u L / L 1 5: v 1 = U 0 6: u R1 = v 1 – v 2 7: i R1 = u R1 / R 1 8: v 2 = u C 9: i C = i R1 – i R2 10: du C /dt = i C / C 1 11: u R2 = u C 12: i R2 = u R2 / R 2 di L dt du C dt S = U0U0 i0i0 uLuL v1v1 v2v2 iCiC u R1 i R1 i R2 u R2

7 Anfang Präsentation Signale und Systeme II Der Strukturdigraph Der Strukturdigraph enthält die gleiche Information wie die Strukturinzidenzmatrix. Die Information ist nur anders dargestellt. Der Strukturdigraph listet links die Gleichungen, rechts die Unbekannten. Eine Verbindungslinie zwischen einer Gleichung und einer Unbekannten zeigt an, dass die Unbekannte in der Gleichung vorkommt.

8 Anfang Präsentation Signale und Systeme II Der Strukturdigraph: Ein Beispiel 1: U 0 = f(t) 2: i 0 = i L + i R1 3: u L = U 0 4: di L /dt = u L / L 1 5: v 1 = U 0 6: u R1 = v 1 – v 2 7: i R1 = u R1 / R 1 8: v 2 = u C 9: i C = i R1 – i R2 10: du C /dt = i C / C 1 11: u R2 = u C 12: i R2 = u R2 / R Gleichungen U0U0 i0 i0 uLuL di L /dt v1 v1 u R1 i R1 v2 v2 iC iC du C /dt u R2 i R2 Unbekannte

9 Anfang Präsentation Signale und Systeme II Der Tarjan Algorithmus Der Tarjan Algorithmus basiert auf dem Strukturdigraphen. Es handelt sich um ein graphisches Verfahren, bei welchem der Digraph gefärbt wird. Gleichungen mit nur einer schwarzen Linie, färbe man diese Linie rot und färbe man alle schwarzen Linien, die von der angezeigten Unbekannten ausgehen blau. Man nummeriere die Gleichungen neu aufsteigend und beginnend mit 1. Unbekannten mit nur einer schwarzen Linie, färbe man diese Linie rot und färbe man alle schwarzen Linien, die von der angezeigten Gleichung ausgehen blau. Man nummeriere die Gleichung neu absteigend und beginnend mit n, der Anzahl Gleichungen.

10 Anfang Präsentation Signale und Systeme II Der Tarjan Algorithmus: Ein Beispiel I Gleichungen U0U0 i0 i0 uLuL di L /dt v1 v1 u R1 i R1 v2 v2 iC iC du C /dt u R2 i R2 Unbekannte 1: U 0 = f(t) 2: i 0 = i L + i R1 3: u L = U 0 4: di L /dt = u L / L 1 5: v 1 = U 0 6: u R1 = v 1 – v 2 7: i R1 = u R1 / R 1 8: v 2 = u C 9: i C = i R1 – i R2 10: du C /dt = i C / C 1 11: u R2 = u C 12: i R2 = u R2 / R 2 01 U 0 U 0 U 0 02 v 2 v 2 03 u R2 u 12 du /dt C i C 11 di /dt L u L 10 i 0 i R1

11 Anfang Präsentation Signale und Systeme II Der Tarjan Algorithmus: Ein Beispiel II Gleichungen U0U0 i0 i0 uLuL di L /dt v1 v1 u R1 i R1 v2 v2 iC iC du C /dt u R2 i R2 Unbekannte 1: U 0 = f(t) 2: i 0 = i L + i R1 3: u L = U 0 4: di L /dt = u L / L 1 5: v 1 = U 0 6: u R1 = v 1 – v 2 7: i R1 = u R1 / R 1 8: v 2 = u C 9: i C = i R1 – i R2 10: du C /dt = i C / C 1 11: u R2 = u C 12: i R2 = u R2 / R 2 01 U 0 U 0 U 0 02 v 2 v 2 03 u R2 u 12 du /dt C i C 11 di /dt L u L 10 i 0 i R1 04 u L 05 v 1 v 1 06 i R2 i 09 i C i R1

12 Anfang Präsentation Signale und Systeme II Der Tarjan Algorithmus: Ein Beispiel III Gleichungen U0U0 i0 i0 uLuL di L /dt v1 v1 u R1 i R1 v2 v2 iC iC du C /dt u R2 i R2 Unbekannte 1: U 0 = f(t) 2: i 0 = i L + i R1 3: u L = U 0 4: di L /dt = u L / L 1 5: v 1 = U 0 6: u R1 = v 1 – v 2 7: i R1 = u R1 / R 1 8: v 2 = u C 9: i C = i R1 – i R2 10: du C /dt = i C / C 1 11: u R2 = u C 12: i R2 = u R2 / R 2 01 U 0 U 0 U 0 02 v 2 v 2 03 u R2 u 12 du /dt C i C 11 di /dt L u L 10 i 0 i R1 04 u L 05 v 1 v 1 06 i R2 i 09 i C i R1 07 u R1 u 08 i R1

13 Anfang Präsentation Signale und Systeme II Der Tarjan Algorithmus: Ein Beispiel IV Gleichungen U0U0 i0 i0 uLuL di L /dt v1 v1 u R1 i R1 v2 v2 iC iC du C /dt u R2 i R2 Unbekannte : U 0 = f(t) 2: v 2 = u C 3: u R2 = u C 4: u L = U 0 5: v 1 = U 0 6: i R2 = u R2 / R 2 7: u R1 = v 1 – v 2 8: i R1 = u R1 / R 1 9: i C = i R1 – i R2 10: i 0 = i L + i R1 11: di L /dt = u L / L 1 12: du C /dt = i C / C 1

14 Anfang Präsentation Signale und Systeme II Die Strukturinzidenzmatrix des vollständig sortierten Gleichungssystems ist eine Matrix in der unteren Dreiecksform. Die Strukturinzidenzmatrix II 1: U 0 = f(t) 2: v 2 = u C 3: u R2 = u C 4: u L = U 0 5: v 1 = U 0 6: i R2 = u R2 / R 2 7: u R1 = v 1 – v 2 8: i R1 = u R1 / R 1 9: i C = i R1 – i R2 10: i 0 = i L + i R1 11: di L /dt = u L / L 1 12: du C /dt = i C / C 1 di L dt du C dt S = U0U0 i0i0 u R2 v2v2 v1v1 iCiC u R1 i R1 i R2 uLuL

15 Anfang Präsentation Signale und Systeme II Algebraische Schleifen: Ein Beispiel I 1: U 0 = f(t) 2: u 1 = R 1 · i 1 3: u 2 = R 2 · i 2 4: u 3 = R 3 · i 3 5: u L = L· di L /dt 6: i 0 = i 1 + i L 7: i 1 = i 2 + i 3 8: U 0 = u 1 + u 3 9: u 3 = u 2 10: u L = u 1 + u Gleichungen U0U0 i0 i0 uLuL di L /dt u1 u1 i1i1 u2u2 i2 i2 u3 u3 i3i3 Unbekannte

16 Anfang Präsentation Signale und Systeme II Algebraische Schleifen: Ein Beispiel II 1: U 0 = f(t) 2: u 1 = R 1 · i 1 3: u 2 = R 2 · i 2 4: u 3 = R 3 · i 3 5: u L = L· di L /dt 6: i 0 = i 1 + i L 7: i 1 = i 2 + i 3 8: U 0 = u 1 + u 3 9: u 3 = u 2 10: u L = u 1 + u Gleichungen U0U0 i0 i0 uLuL di L /dt u1 u1 i1i1 u2u2 i2 i2 u3 u3 i3i3 Unbekannte

17 Anfang Präsentation Signale und Systeme II Algebraische Schleifen: Ein Beispiel III 1: U 0 = f(t) 2: u 1 = R 1 · i 1 3: u 2 = R 2 · i 2 4: u 3 = R 3 · i 3 5: u L = L· di L /dt 6: i 0 = i 1 + i L 7: i 1 = i 2 + i 3 8: U 0 = u 1 + u 3 9: u 3 = u 2 10: u L = u 1 + u Gleichungen U0U0 i0 i0 uLuL di L /dt u1 u1 i1i1 u2u2 i2 i2 u3 u3 i3i3 Unbekannte Der Algorithmus kommt ins Stocken, da es keine einzelnen schwarzen Linien zu Gleichungen oder Variablen mehr gibt.

18 Anfang Präsentation Signale und Systeme II Das Aufbrechen algebraischer Schleifen I Die folgende Heuristik kann angewandt werden, um geeignete Schnittvariablen zu suchen: Im Digraphen bestimmt man diejenigen Gleichungen mit der grössten Anzahl Unbekannter. Für jede dieser Gleichungen findet man die Unbekannten, die am häufigsten in noch unverwendeten Gleichungen vorkommen. Für jede dieser Variablen ermittelt man, wie viele zusätzliche Gleichungen kausalisiert werden können, wenn man diese als bekannt annimmt. Man wählt diejenige Variable als nächste Schnittvariable, die die grösste Anzahl zusätzlicher Gleichungen kausalisiert.

19 Anfang Präsentation Signale und Systeme II Das Aufbrechen algebraischer Schleifen II Im gegebenen Beispiel hat Gleichung #7 noch 3 Unbe- kannte. Alle anderen unverwendeten Gleichungen haben nur noch 2 Unbekannte. Gleichung #7 beinhaltet die Variablen i 1, i 2, and i 3. Jede dieser Variablen kommt in einer weiteren unbenutzten Gleichung vor. Bereits Variable i 1 erlaubt es, sämtliche Gleichungen zu kausalisieren. Somit wird i 1 als Schnittvariable verwendet.

20 Anfang Präsentation Signale und Systeme II Algebraische Schleifen: Ein Beispiel IV Gleichungen U0U0 i0 i0 uLuL di L /dt u1 u1 i1i1 u2u2 i2 i2 u3 u3 i3i3 Unbekannte : U 0 = f(t) 2: u 1 = R 1 · i 1 3: u 2 = R 2 · i 2 4: u 3 = R 3 · i 3 5: u L = L· di L /dt 6: i 0 = i 1 + i L 7: i 1 = i 2 + i 3 8: U 0 = u 1 + u 3 9: u 3 = u 2 10: u L = u 1 + u 2 Wahl

21 Anfang Präsentation Signale und Systeme II Algebraische Schleifen: Ein Beispiel V 1: U 0 = f(t) 2: u 1 = R 1 · i 1 3: u 2 = R 2 · i 2 4: u 3 = R 3 · i 3 5: u L = L· di L /dt 6: i 0 = i 1 + i L 7: i 1 = i 2 + i 3 8: U 0 = u 1 + u 3 9: u 3 = u 2 10: u L = u 1 + u 2 Wahl Gleichungen U0U0 i0 i0 uLuL di L /dt u1 u1 i1i1 u2u2 i2 i2 u3 u3 i3i3 Unbekannte

22 Anfang Präsentation Signale und Systeme II Algebraische Schleifen: Ein Beispiel VI 1: U 0 = f(t) 2: u 1 = R 1 · i 1 3: u 2 = R 2 · i 2 4: u 3 = R 3 · i 3 5: u L = L· di L /dt 6: i 0 = i 1 + i L 7: i 1 = i 2 + i 3 8: U 0 = u 1 + u 3 9: u 3 = u 2 10: u L = u 1 + u 2 Wahl Gleichungen U0U0 i0 i0 uLuL di L /dt u1 u1 i1i1 u2u2 i2 i2 u3 u3 i3i3 Unbekannte

23 Anfang Präsentation Signale und Systeme II Algebraische Schleifen: Ein Beispiel VII 1: U 0 = f(t) 2: u 1 = R 1 · i 1 3: u 2 = R 2 · i 2 4: u 3 = R 3 · i 3 5: u L = L· di L /dt 6: i 0 = i 1 + i L 7: i 1 = i 2 + i 3 8: U 0 = u 1 + u 3 9: u 3 = u 2 10: u L = u 1 + u 2 Wahl Gleichungen U0U0 i0 i0 uLuL di L /dt u1 u1 i1i1 u2u2 i2 i2 u3 u3 i3i3 Unbekannte

24 Anfang Präsentation Signale und Systeme II Algebraische Schleifen: Ein Beispiel VIII 1: U 0 = f(t) 2: u 1 = R 1 · i 1 3: u 2 = R 2 · i 2 4: u 3 = R 3 · i 3 5: u L = L· di L /dt 6: i 0 = i 1 + i L 7: i 1 = i 2 + i 3 8: U 0 = u 1 + u 3 9: u 3 = u 2 10: u L = u 1 + u 2 Wahl Gleichungen U0U0 i0 i0 uLuL di L /dt u1 u1 i1i1 u2u2 i2 i2 u3 u3 i3i3 Unbekannte

25 Anfang Präsentation Signale und Systeme II Algebraische Schleifen: Ein Beispiel IX 1: U 0 = f(t) 2: i 1 = i 2 + i 3 3: u 1 = R 1 · i 1 4: u 3 = U 0 - u 1 5: u 2 = u 3 6: i 2 = u 2 / R 2 7: i 3 = u 3 / R 3 8: u L = u 1 + u 2 9: i 0 = i 1 + i L 10: di L /dt = u L / L Wahl Gleichungen U0U0 i0 i0 uLuL di L /dt u1 u1 i1i1 u2u2 i2 i2 u3 u3 i3i3 Unbekannte

26 Anfang Präsentation Signale und Systeme II Die Strukturinzidenzmatrix hat nun die Form einer unteren Blockdreiecksmatrix (Block Lower Triangular form oder BLT form). Die Strukturinzidenzmatrix III di L dt S = U0U0 i0i0 i2i2 u3u3 i2i2 u1u1 i1i1 i3i3 uLuL 1: U 0 = f(t) 2: i 1 = i 2 + i 3 3: u 1 = R 1 · i 1 4: u 3 = U 0 - u 1 5: u 2 = u 3 6: i 2 = u 2 / R 2 7: i 3 = u 3 / R 3 8: u L = u 1 + u 2 9: i 0 = i 1 + i L 10: di L /dt = u L / L Wahl u2u2

27 Anfang Präsentation Signale und Systeme II Das Auflösen algebraischer Schleifen I Der Tarjan Algorithmus identifiziert und isoliert algebraische Schleifen. Er formt die Strukturinzidenzmatrix um, so dass sie eine untere Blockdreiecksform annimmt, wobei die diagonalen Blöcke so klein wie möglich gehalten werden. Die Schnittvariabeln werden nicht in einer echt optimalen Form ausgewählt. Dies erweist sich nicht als sinnvoll, da gezeigt wurde, dass das Problem der optimalen Wahl von Schnittvariabeln np- vollständig ist. Stattdessen werden Heuristiken angewandt, welche normalerweise zu einer sehr kleinen Anzahl von Schnittvariabeln führen, obwohl diese Zahl möglicherweise nicht minimal ist. Der Tarjan Algorithmus befasst sich nicht mit dem Problem, wie die resultierenden algebraischen Schleifen aufgelöst werden.

28 Anfang Präsentation Signale und Systeme II Das Auflösen algebraischer Schleifen II Die algebraischen Schleifen können entweder analytisch oder aber numerisch aufgelöst werden. Falls die algebraisch gekoppelten Gleichungen nichtlinear sind, mag eine Newton Iteration über die Schnittvariabeln optimal sein. Falls die algebraisch gekoppelten Gleichungen linear sind und falls der Satz ziemlich gross ist, mag eine Newton Iteration immer noch die Methode der Wahl sein. Falls die algebraisch gekoppelten Gleichungen linear sind und falls der Satz nicht sehr gross ist, können die Gleichungen entweder mittels Matrizenrechnung oder aber mittels expliziter symbolischer Formelmanipulation gelöst werden.

29 Anfang Präsentation Signale und Systeme II Strukturelle Singularitäten: Ein Beispiel I I 1 I 2 I 3 i C i L1 i L2 i R v 1 v 2 v 3 v 0 Wir stellen ein Modell unter Ver- wendung der Ströme, Spannungen und Potentiale auf. Die Maschen- gleichungen werden daher ignoriert. Wir haben 7 Netzwerkkomponenten plus die Erde, somit = 15 Gleichungen. Dazu kommen vier Knoten, die zu 3 zusätzlichen Gleichungen führen. Somit erwar- ten wir 18 Gleichungen in 18 Unbe- kannten. Die Spannungen werden bei passiven Komponenten in die gleiche Richtung positiv normiert wie die Ströme. Bei aktiven Komponenten (Quellen) ist es umgekehrt.

30 Anfang Präsentation Signale und Systeme II Strukturelle Singularitäten: Ein Beispiel II 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 /dt 7: i C = C · du C /dt 8: v 0 = 0 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = I1I1 I2I2 I3I3 uRuR iRiR u L1 di L1 /dt u L2 di L2 /dt iCiC du C /dt v0v0 v1v1 v2v2 v3v3 u1u1 u2u2 u3u3

31 Anfang Präsentation Signale und Systeme II Strukturelle Singularitäten: Ein Beispiel III 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 /dt 7: i C = C · du C /dt 8: v 0 = 0 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = I1I1 I2I2 I3I3 uRuR iRiR u L1 di L1 /dt u L2 di L2 /dt iCiC du C /dt v0v0 v1v1 v2v2 v3v3 u1u1 u2u2 u3u

32 Anfang Präsentation Signale und Systeme II Strukturelle Singularitäten: Ein Beispiel IV 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 /dt 7: i C = C · du C /dt 8: v 0 = 0 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = I1I1 I2I2 I3I3 uRuR iRiR u L1 di L1 /dt u L2 di L2 /dt iCiC du C /dt v0v0 v1v1 v2v2 v3v3 u1u1 u2u2 u3u Beschränkungsgleichung Alle Verbindungen sind blau

33 Anfang Präsentation Signale und Systeme II Struktureller Singularitäten I Wenn eine Gleichung keine Unbekannte mehr enthält, obwohl sie noch nicht verwendet wurde, ist eine strukturelle Singularität aufgetreten. Wenn eine Variable in allen Gleichungen bereits bekannt ist, obwohl sie noch nicht kausalisiert wurde, ist ebenfalls eine strukturelle Singularität eingetreten.

34 Anfang Präsentation Signale und Systeme II Struktureller Singularitäten II Strukturelle Singularitäten deuten darauf hin, dass die scheinbaren Zustandsgrössen im Modell algebraisch gekoppelt sind, d.h. dass das System in Wirklichkeit von niederer Ordnung ist. Dies entspricht nicht dem Problem der Steuerbarkeit und/oder Beobachtbarkeit (parametrische Singularität); es tritt bei beliebigen Parameterwerten auf.

35 Anfang Präsentation Signale und Systeme II Das Entfernen struktureller Singularitäten mittels Pantelides Algorithmus Es wird nun ein Verfahren vorgestellt, welches dazu verwendet werden kann, strukturelle Singularitäten in systematischer und algorith- mischer Weise aus einem Modell zu entfernen. Das Verfahren wird Pantelides Algorithm genannt.

36 Anfang Präsentation Signale und Systeme II Der Algorithmus von Pantelides I Wenn eine Beschränkungsgleichung gefunden wurde, muss diese abgeleitet werden. Beim Algorithmus von Pantelides wird die abgeleitete Beschränkungsgleichung dem Gleichungssystem zugefügt. Somit hat das Gleichungssystem nun eine überzählige Gleichung. Um die Anzahl von Gleichungen und Unbekannten wieder auszugleichen, wird ein mit der Beschränkungsgleichung verbundener Integrator eliminiert.

37 Anfang Präsentation Signale und Systeme II Der Algorithmus von Pantelides II dx dt x unbekannt bekannt, da Zustandsvariable dx dt x unbekannt dx x unbekannt Eine zusätzliche Unbekannte wurde durch die Elimination des Integrators geschaffen. x und dx sind nun algebraische Variablen, für die Gleichungen gefunden werden müssen.

38 Anfang Präsentation Signale und Systeme II Der Algorithmus von Pantelides III Beim Ableiten der Beschränkungsgleichung kann es geschehen, dass zusätzliche neue Variablen erzeugt werden, z.B. v dv, wobei v eine algebraische Variable ist. Nachdem v bereits blau war (sonst wäre es ja keine Beschränkungsgleichung), existiert eine andere Gleichung, die v ermittelt. Diese Gleichung muss nun ebenfalls abgeleitet werden. Das Ableiten zusätzlicher Gleichungen hört erst dann auf, wenn keine neuen Variablen mehr erzeugt werden.

39 Anfang Präsentation Signale und Systeme II Der Pantelides Algorithmus: Ein Beispiel I 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 /dt 7: i C = C · du C /dt 8: v 0 = 0 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 dI 1 + di C + di L2 + dI 3 = 0 eliminierter Integrator neu eingeführte Variabeln

40 Anfang Präsentation Signale und Systeme II Der Pantelides Algorithmus: Ein Beispiel II 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 /dt 7: i C = C · du C /dt 8: v 0 = 0 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0

41 Anfang Präsentation Signale und Systeme II Der Pantelides Algorithmus: Ein Beispiel III 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 20: dI 1 = df 1 (t)/dt 21: dI 3 = df 3 (t)/dt 22: di C = di L1 /dt + dI 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 u L1 = L 1 · di L1 /dt neu eingeführte Variable 23: dI 2 = df 2 (t)/dt

42 Anfang Präsentation Signale und Systeme II Der Pantelides Algorithmus: Ein Beispiel IV 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 20: dI 1 = df 1 (t)/dt 21: dI 3 = df 3 (t)/dt 22: di C = di L1 /dt + dI 2 23: dI 2 = df 2 (t)/dt

43 Anfang Präsentation Signale und Systeme II Der Pantelides Algorithmus: Ein Beispiel V 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 20: dI 1 = df 1 (t)/dt 21: dI 3 = df 3 (t)/dt 22: di C = di L1 /dt + dI 2 23: dI 2 = df 2 (t)/dt

44 Anfang Präsentation Signale und Systeme II Der Pantelides Algorithmus: Ein Beispiel VI 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 20: dI 1 = df 1 (t)/dt 21: dI 3 = df 3 (t)/dt 22: di C = di L1 /dt + dI 2 23: dI 2 = df 2 (t)/dt

45 Anfang Präsentation Signale und Systeme II Der Pantelides Algorithmus: Ein Beispiel VII 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 20: dI 1 = df 1 (t)/dt 21: dI 3 = df 3 (t)/dt 22: di C = di L1 /dt + dI 2 23: dI 2 = df 2 (t)/dt

46 Anfang Präsentation Signale und Systeme II Der Pantelides Algorithmus: Ein Beispiel VIII 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 20: dI 1 = df 1 (t)/dt 21: dI 3 = df 3 (t)/dt 22: di C = di L1 /dt + dI 2 23: dI 2 = df 2 (t)/dt di L2 Wahl Es findet sich ein algebraisch gekoppeltes System mit 7 Gleichungen in 7 Unbekannten.

47 Anfang Präsentation Signale und Systeme II Der Pantelides Algorithmus: Ein Beispiel IX 9: u 1 = v 0 – v 1 10: u 2 = v 3 – v 2 11: u 3 = v 0 – v 1 12: u R = v 3 – v 0 13: u L1 = v 2 – v 0 14: u L2 = v 1 – v 3 15: u C = v 1 – v 2 16: i C = i L1 + I 2 17: i R = i L2 + I 2 18: I 1 + i C + i L2 + I 3 = 0 19: dI 1 + di C + di L2 + dI 3 = 0 1: I 1 = f 1 (t) 2: I 2 = f 2 (t) 3: I 3 = f 3 (t) 4: u R = R · i R 5: u L1 = L 1 · di L1 /dt 6: u L2 = L 2 · di L2 7: i C = C · du C /dt 8: v 0 = 0 20: dI 1 = df 1 (t)/dt 21: dI 3 = df 3 (t)/dt 22: di C = di L1 /dt + dI 2 23: dI 2 = df 2 (t)/dt

48 Anfang Präsentation Signale und Systeme II Zusammenfassung I Zunächst findet man einen vollständigen Satz a-kausaler Algebrodifferentialgleichungen. Auf diesen Satz wendet man den Färbealgorithmus von Tarjan an. Falls sich eine Gleichung findet, die völlig blau gefärbt ist, ist das System strukturell singulär. Das strukturell singuläre System wird mittels Anwendung des Algorithmus von Pantelides regulär gemacht. Es mag nötig sein, den Pantelides Algorithmus mehrfach anzuwenden.

49 Anfang Präsentation Signale und Systeme II Zusammenfassung II Auf das nunmehr reguläre Algebrodifferentialgleichungs- system wendet man wiederum den Färbealgorithmus von Tarjan an. Falls der Algorithmus ins Stocken kommt, hat man es mit einem algebraisch gekoppelten System zu tun. Nach der Anwendung des Pantelides Algorithmus auf ein strukturell singuläres System treten algebraische Schleifen häufig auf. Dieses System muss nun zunächst weiterverarbeitet werden. Das Aufschneideverfahren, welches bereits vorgestellt wurde, ist ein mögliches Verfahren, um mit solchen algebraisch gekoppelten Systemen umzugehen.

50 Anfang Präsentation Signale und Systeme II Ausblick


Herunterladen ppt "Anfang Präsentation Signale und Systeme II Modellierung Elektrischer Schaltkreise II Prof. Dr. François E. Cellier Institut für Computational Science ETH."

Ähnliche Präsentationen


Google-Anzeigen