Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Clemens Simmer Einführung in die Meteorologie (met210) - Teil VII: Synoptik.

Ähnliche Präsentationen


Präsentation zum Thema: "Clemens Simmer Einführung in die Meteorologie (met210) - Teil VII: Synoptik."—  Präsentation transkript:

1 Clemens Simmer Einführung in die Meteorologie (met210) - Teil VII: Synoptik

2 2 VII Synoptische Meteorologie Synoptik ist die Zusammenschau der Wettervorgänge in Raum und Zeit mit dem Ziel der Wetteranalyse und Wettervorhersage. Die Synoptik ist Teil der Angewandten Meteorologie. 1. Allgemeines - Definitionen - Darstellungsweisen - Dreidimensionale Sicht 2. Synoptische Systeme mitterer Breiten, oder Wie entstehen Tiefs und Hochs - verschiedene Skalen - Vorticitygleichung - Frontentheorien

3 3 VII.2.2 Barotrope Rossby-Wellen Wir betrachten nun die langen Wellen in der Höhenströmung. Dies tun wir zunächst unter Vernachlässigung der horizontalen Temperaturgradienten – die ja die eigentliche Ursache für diese Strömung sind (siehe thermischer Wind). Gliederung Ursache des westlichen Grundstroms (Wiederholung) Einführung der allgemeinen Vorticitygleichung Barotrope Vorticitygleichung und Rossby-Wellen

4 4 Die Westwinddrift lässt sich ansatzweise aus der Höhen-abhängigkeit des geostrophischen Windes erklären (thermischer Wind) Zwischen den warmen subtropischen Breiten mit ihrem Hochdruckgürtel und den kalten hohen Breiten bildet sich ein Westwindband aus. Die Temperatur nimmt im Mittel zwischen 3 und 10 K pro 1000 km ab (differentielle Strahlungserwärmung). Daraus folgen Windzunahmen mit der Höhe zwischen 1 und 3 m/s pro km Höhendifferenz (thermischer Wind). popo H, warm T, kalt p o - p p o -2 p Nun geht es darum die Wellenstruktur der Höhenströmung und die an die Wellen geknüpften dynamischen Tiefs und Hochs zu erklären. Dazu ist die Vorticity-Gleichung hilfreich.

5 5 Allgemeine Vorticitygleichung (1) Differenziere die x-Komponente der Bewegungsgleichung nach y und die y- Komponente nach x: Subtrahiere die obere Gleichung von der unteren und ersetze mit ζ relative Vorticity. Die Vorticitygleichung ist eine prognostische Gleichung für die Vorticity. Es folgt eine Ableitung aus den beiden horizontalen Bewegungsgleichungen unter Annahme von Reibungsfreiheit. Mit und η absolute Vorticity folgt dann

6 6 Allgemeine Vorticitygleichung (2) Absolute Vorticity η (bzw. relative Vorticity ζ, wenn sich die Breite nur wenig ändert) wird also erzeugt durch: 1.Horizontale Konvergenz 2.Kombination von horizontaler Änderung des Vertikalwindes mit einer vertikalen Änderung des Horizontalwindes 3.Schneiden von Isolinien von Druck und Temperatur (Sonderfall barokliner Verhältnisse).

7 7 Divergenzterm Beim Zusammenströmen (horizontale Konvergenz, Konfluenz) lenkt die Coriolisbeschleunigung die Luft nach rechts ab – zyklonale relative Vorticity wird erzeugt. Beim Auseinanderströmen (horizontale Divergenz, Diffluenz) lenkt die Coriolisbeschleunigung die Luft ebenfalls nach rechts ab – antizyklonale relative Vorticity wird erzeugt.

8 8 Tiltingterm Beispiel: Eine vertikale Zunahme der nordwärtigen Windgeschwindigkeit ist eine Vorticity mit einer nach Westen gerichteten Achse. Hat der Vertikalwind eine Scherung wie angegeben, so wird die Vorticity mit horizontaler Achse in die Vertikale gekippt – reguläre (horizontale) Vorticity entsteht. Dieser Term ist auf der synoptischen Skala meist sehr klein, ist aber vermutlich mit ein Auslöser für Tornados aus Böenwalzen.

9 9 Solenoid term Dieser Term lässt sich analog erklären wie die für Land-Seewind und auch die Hadley-Zirkulation. Es schneiden sich die Isobaren mit den Isothermen (oder Isopyknen = gleiche Dichte) und es entsteht eine direkte (thermische) Zirkulation. Dies gilt natürlich auch in der Horizontalen. Offensichtlich ist ein baroklines Feld notwendig damit dieser Term nicht verschwindet.

10 10 Barotrope Rossby-Wellen (1)

11 11 Barotrope Rossby-Wellen (2)

12 12 Barotrope Rossby-Wellen (3) λ N S Initial- störung Durch Breitenänderung initiierte Drehbewegung der Strömung η=f df/dt 0 df/dt<0 da also also also ς=0 dς/dt>0 dς/dt 0

13 13 Barotrope Rossby-Wellen – Ausbreitung (1) Wie breiten sich diese barotropen Rossby-Wellen aus? Ihre Geschwindigkeit c kann man wie folgt berechnen:

14 14 Barotrope Rossby-Wellen – Ausbreitung (2) Rossby-Wellen wandern also mit einer Geschwindigkeit, die von der Strömungsgeschwindigkeit u 0 und der Wellenlänge λ abhängt. d.h. die Wellen pflanzen sich mit Grundstromgeschwindigkeit u 0 aus, aber vermindert um β/k². Je kürzer die Wellen, desto schneller wandern sie in Richtung des Grundstroms (also nach Osten). Bei 45° und λ > 7000 km Wellenlänge wandern Die Wellen bei einer Grundstromgeschwindigkeit ū = 10 m/s nach Westen. Oft sind die langen Wellen quasi-stationär. Genauer: Alle Rossby-Wellen laufen bezogen auf ein mitdriftendes Partikel im Grundstrom (also Grundstrom abziehen) nach Westen, und zwar je länger die Welle, desto schneller (k~1/λ). Wichtig: Rossby-Wellen erfordern neben der Erdrotation auch die Kugelgestalt der Erde (β-Effekt)!

15 15 Barotrope Rossby-Wellen – Ausbreitung (3) Macht man eine Betrachtung relativ zum Grundstrom (zieht man den Grundstrom von der Geschwindgkeit ab), so wird unmittelbar klar, dass alle Rossby-Wellen nach Westen laufen müssen.

16 16 Übungen zu VII Leite die Vorticitygleichung aus den horizontalen Bewegungsgleichungen ab. 2.Bestimme die Wellen von stationären barotropen Rossby- Wellen für Grundstromgeschwindigkeiten von 10 und 15 m/s und für 40° und 60° Breite.


Herunterladen ppt "Clemens Simmer Einführung in die Meteorologie (met210) - Teil VII: Synoptik."

Ähnliche Präsentationen


Google-Anzeigen